

HORSE CREEK (WAKE FOREST COUNTRY CLUB) FINAL MONTORING REPORT

YEAR 3 2008 EEP Project # 409 Wake County, North Carolina

Submitted to:

NCDENR-EEP 1652 Mail Service Center Raleigh, NC 27699

HORSE CREEK (WAKE FOREST COUNTRY CLUB) FINAL MONTORING REPORT YEAR 3

2008

EEP Project # 409 Wake County, North Carolina

Original Design Firm:

Dewberry and Davis, Inc. 2301 Rexwoods Drive, Suite 200 Raleigh, NC 27607-3366

Submitted to:

1652 Mail Service Center Raleigh, NC 27699 **Monitoring Firm:**

1025 Wade Avenue Raleigh, North Carolina 27605 Phone: (919)789-9977 Project Manager: Phillip Todd ptodd@sepiengineering.com

Executive Summary

The Ecosystem Enhancement Program identified Horse Creek (Wake Forest Country Club), as a stream restoration site. The project includes 2,825 linear feet (lf) of Horse Creek and 550 lf of an Unnamed Tributary (UT) to Horse Creek. Prior to restoration the stream was classified as a Rosgen C/E5 stream. The majority of the pre-construction stream bank lacked natural vegetation which resulted in increased bank erosion and reduced buffer filtration rates. Restoration of Horse Creek called for a Rosgen C5 stream, reconnected the stream to its original floodplain in a new alignment, and increased stream length and sinuosity. The UT was an entrenched, under-sinuous, G5e. The design for the UT called for a Rosgen E5 channel, raised the profile, and reconnected the stream to its floodplain along a new alignment.

Current monitoring for the site consists of evaluating stream morphology and riparian vegetation. The stream monitoring included a longitudinal survey, cross section surveys, problem area identification, and photo documentation. The vegetation assessment included the 2006 CVS protocol for vegetation plots stem counts, vegetation-specific problem area identification, and photo documentation. All morphological data, vegetation plot counts, cross section surveys, longitudinal profile, and plan view features were compared between monitoring years to assess project performance.

Monitoring Year 3 monitoring showed that the Horse Creek mainstem section had a stable dimension and pattern, with the exception of extensive areas of bank slumping. The bank slumping areas were concentrated downstream of Station 26+25. There are two crossvanes and two J-hooks that have piping and/or backarm scour that may warrant repair assessment. There have been changes in profile, presumably as a result of the construction of beaver dams in Monitoring Year 3. The result of this damming has been an 30% increase in the total length of pool habitat and a 43% reduction in total length of riffle habitat. Removal of the beaver dams may be warranted.

The UT Horse Creek reach has remained stable for Monitoring year 3. The headcut observed in Monitoring Year 2 has not progressed upstream, but will be observed closely during Monitoring Year 4. A long aggradational section toward the downstream end of the UT reach may need attention as it appears to have extended downstream by an additional 48 feet. In addition, all three crossvanes had water piping around and/or under some part of the structure. The crossvane located at Station 12+27 along UT Horse Creek has piping of water around the right arm (facing downstream), a rock missing from the right arm, and the pool is filled in with sediment.

The most extensive vegetation problem areas were long sections of past-mowed floodplain that had been mowed as part of regular fairway maintenance before the country club closed. These areas are located along the upper two thirds of the Horse Creek mainstem and along the entire UT section. Supplemental plantings may be necessary to boost succession in these areas. In addition, the lower portion of Horse Creek has stands of invasive Chinese Privet (*Ligustrum sinense*).

The vegetation plots (VP) impacted by past-mowing (i.e., VP C, E, and O) have stem densities below 260 stems/acre (Monitoring Year 5 goal). However, if natural volunteer stems are included in the density calculations, all vegetation plots pass the Monitoring Year 5 stem density goal. Therefore, planted stem densities of less than the Monitoring Year 5 goal should not be interpreted as an indication of the planted species being completely inappropriate, or the growing conditions being severely inhospitable. In fact, the evidence of naturalization of volunteer stems suggests the growing conditions are suitable for good herbaceous and woody vegetative growth without supplemental plantings. However, supplemental plantings may be necessary to boost species diversity and/or the prevalence of a certain target species.

HORSE CREEK (WAKE FOREST COUNTRY CLUB) STREAM RESTORATION MONITORING YEAR 3 REPORT

CONDUCTED FOR: NCDENR ECOSYSTEM ENHANCEMENT PROGRAM

TABLE OF CONTENTS

11	PROJEC	CT BACKGROUND	
	1.1	Project Objectives	
	1.2	Project Structure, Restoration Type, and Approach	
	1.3	Project Location and Setting	
	1.4	History and Background	
21	PROJEC	CT MONITORING METHODOLOGY	
	2.1	Vegetation Methodology	7
	2.2	Stream Methodology	
		2.2.1 Longitudinal Profile and Plan View	
		2.2.2 Permanent Cross-Sections	
		2.2.3 Pebble Counts	
	2.3	Photo Documentation	
31	PROJEC	CT CONDITIONS AND MONITORING RESULTS	9
	3.1	Vegetation Assessment	9
		3.1.1 Soils Data	9
		3.1.2 Vegetative Problem Area Plan View	9
		3.1.3 Stem Counts	9
	3.2	Stream Assessment	
		3.2.1 Longitudinal Profile and Plan View	
		3.2.2 Permanent Cross Sections	
		3.2.3 Pebble Counts	
		3.2.4 Stream Problem Areas	
	3.3	Photo Documentation	
41	RECOM	IMENDATIONS AND CONCLUSIONS	
REFERI	ENCES		14
	LITELD.		
TABLE	S		
		Restoration Components	
Table II	Project A	Activity and Reporting History	
		Contact Table	
		Background Table	
		Data Table	
		tion of Bankfull Events	
		and Sediment Export Estimates	
		orical Stream Feature Visual Stability Assessment	
		line Morphology and Hydraulic Summary	
		nology and Hydraulic Monitoring Summary	
		Data Tables	
		ve Problem Areas	
		Problem Areas	
		Morphological Stability Assessment	
- uoie Di	- , 15441		-rpenan D5
FIGUR	ES		
Figure 1	: Vicinity	y Map	

Monitoring Plan View.....Appendix C Vegetation Current Conditions Plan View.....Appendix C

Appendix C
A1
A2
A3
B1
B2
B3
B4
B5
B6

Appendix C: Plan View Sheets

1.0 PROJECT BACKGROUND

1.1 <u>Project Objectives</u>

The stream restoration goals of the Horse Creek project included following:

- Reduce downstream sedimentation by stabilizing eroding stream banks within the Wake Forest Country Club (WFCC) property;
- Replace degraded stream reaches with a stabilized streams that support natural stream processes;
- Reduce property loss within the WFCC property;
- Improve aquatic habitat, including pools for fish, woody debris for habitat, and reduce water temperature from shading by riparian trees; and,
- Improve aesthetics of the restored stream reach.

Specifically, the restoration of the riparian buffer was aimed at having the following benefits:

- Reduce nutrient inputs to Falls Lake and the Neuse River;
- Provide additional source water protection for Falls Lake, Raleigh's water supply; and,
- Establish a riparian corridor for wildlife between existing wooded areas.

1.2 <u>Project Structure, Restoration Type, and Approach</u>

Prior to restoration, the Horse Creek mainstem was a Rosgen Type C/E5 stream moving toward instability. The site was identified as a stream restoration site by the North Carolina Ecosystem Enhancement Program (EEP). Degradation of the stream and lack of naturally occurring vegetation on the stream banks resulted in bank erosion, reduced buffer filtration rates, sediment deposition, undercutting of stream bank trees, and a loss of in-stream habitat. In addition, recent upstream development has placed increased stress on the channel. The restoration design for Horse Creek mainstem called for a Rosgen C5 stream. The overall mitigation strategy for Horse Creek called for improved pattern, dimension, and profile, and restoration of the riparian buffer along the project reach. This effort was limited by several on-site physical constraints, including three existing bridges, a double culvert, and several areas within fairways that were identified as landing zones for golfers. The Priority Level I stream restoration was designed to improve bank stability, reduce erosion rates, improve aquatic habitat, and replace or augment the vegetated riparian buffer.

The unnamed tributary (UT) section was a G5e type stream channel and was restored to an E5 stream type. The Priority Level I resotoration improved the channel pattern, profile, and dimension. The channel bed elevation was raised to reconnect the stream to its floodplain along the new alignment. The riparian areas along Horse Creek and the UT were planted upon completion of construction. See Table I for specific project restoration components.

	Table I. Project Restoration Components Horse Creek/EEP Project Number 409								
Project Segment or Reach ID	Pre-Existing Footage	Type	Approach	As-Built Footage	As-Built Stationing	Monitoring Year 4 Stationing	Comments		
Horse Creek	2,890	R^	PI & PII*	2,899	0+00 – 28+99	10+00 – 39+69	Channel relocation.		
UT to Horse Creek	612	R^	PI	548	0+00 - 5+48	10+00 – 15+52	Channel relocation.		

* denotes that the Restoration Plan states Priority 1 for the stream, except "at the intersections, the proposed reach will be Priority 2".

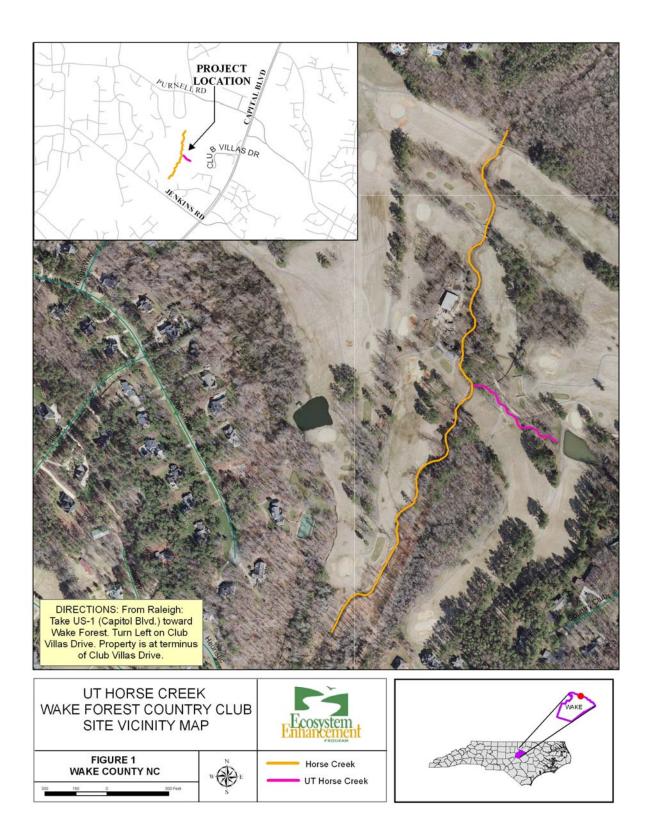
"P" in the Approach column refers to Priority Level.

^ denotes that the Restoration Plan states the stream channel was elevated and reattached to its flood plain.

PI denotes Priority I

PII denotes Priority 2II

R denotes Restoration


1.3 <u>Project Location and Setting</u>

The Horse Creek Stream Restoration project is located within the Wake Forest Golf and Country Club (WFCC) property in the Town of Wake Forest, Wake County, North Carolina (Figure 1). To reach the site from Raleigh, follow US 1 (Capital Boulevard) North to Wake Forest. The Wake Forest Country Club is on the left side of the road at 13239 Capital Boulevard.

The watershed is located entirely within the Piedmont physiographic region. At its former confluence with the Neuse River, the watershed has a drainage area of approximately 22 square miles. The Horse Creek watershed is roughly bounded by Falls Lake to the south, US 1 to the east, NC 96 to the north, and SR 1922, SR 1923, and SR 1139 along its western boundary. The northern watershed limits along NC 96 form the boundary between the Tar-Pamlico River basin to the north and the Neuse River basin to the south. The drainage area at the upstream limit of the site is approximately 7.9 square miles, and at the downstream end of the project site drains approximately 9.8 square miles.

1.4 <u>History and Background</u>

The EEP identified Horse Creek, located within the WFCC property, as a stream restoration site in connection with Targeted Local Watershed 65020. Horse Creek is a tributary of the Neuse River and discharges into Falls Lake. Prior to restoration, Horse Creek was a C/E5 stream that was moving towards instability from various on-site and off-site factors. Removal of vegetation along the creek had resulted in increased opportunity for bank erosion and reduced filtration rates. Scour pools had developed immediately downstream of flow constrictions caused by the golf cart bridges and a large metal double culvert. A wooded area along the eastern side of the downstream portion of Horse Creek contained a large number of invasive plant species. The preexisting channel for the UT was entrenched and lacked sinuosity. Although the riparian area around the UT contained several mature overstory trees, the understory was virtually nonexistent. The Horse Creek Stream Restoration Project encompassed two restored stream reaches and restoration of the riparian buffer along as much of the project as possible. Other project details area listed in the following tables: Table II lists the project activity and reporting history; Table III provides contact information for the various contractors associated with the project; and, Table IV provides background information about the project site.

Horse Creek Monitoring Report EEP Project Number 409 February 2009

Table II. Project Activity and Reporting History							
Horse Creek Stream Restoration/EEP Project Number 409							
Activity or Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery				
Restoration Plan	2002		November 22, 2002				
Final Design - 90%	2003		March 27, 2003				
Construction	2003		April 1, 2005				
Temporary S&E mix applies to entire project area	2003		April 1, 2005				
Permanent seed mix applies to reach/segments 1&2	2003		April 1, 2005				
Containerized and B&B plantings for reach/segments 1&2	2003		April 1, 2005				
Mitigation Plan/ As-built (Year 0 Monitoring - baseline)	2003						
Year 1 monitoring	December 2006	August 2006	August 1, 2006				
Year 2 monitoring	December 2007	November 2007	December 21, 2007				
Year 3 monitoring	December 2008	November 2008	December 5, 2008				
Year 4 monitoring	December 2009	NA					
Year 5 monitoring	December 2010	NA					

*Wake Forest Country Club closed in 2007 (Monitoring Year 2) and, as a result, golf course maintenance was discontinued at that time.

Table III. P	roject Contact Table
Horse Creek (Wake Forest Cou	ntry Club) /EEP Project Number 71082
Designer Kenneth Ashe, PE	Dewberry & Davis, Inc 2301 Rexwoods Drive, Suite 200 Raleigh, NC 27607 919-881-9939
Construction Contractor Allen Eudy	Contaminant Control, Inc 438-C Robeson Street Fayetteville, NC 28301 910-484-7000
Planting Contractor Jim Matthews, Ph.D.	HARP 9305-D Monroe Road Charlotte, NC 28270 704-687-4061
Seeding Contractor Andrew Van Vlack	705 Comphrey Court Wake Forest, NC 27587 919-570-6163
Seed Source	Mellow Marsh Farm 1312 Woody Store Road Siler City, NC 27344 919-742-1200
Nursery Stock Suppliers	Mellow Marsh Farm 1312 Woody Store Road Siler City, NC 27344 919-742-1200
2006 (Year 1) Monitoring Performers Kenneth Ashe, PE	Dewberry & Davis, Inc 2301 Rexwoods Drive, Suite 200 Raleigh, NC 27607 919-881-9939
2007-2008 (Year 2 & 3) Monitoring Performers Phillip Todd	SEPI Engineering Group 1025 Wade Avenue Raleigh, NC 27605 919-789-9977
2008 Stream Monitoring POC	Ira Poplar-Jeffers (919) 789-9977
2008 Vegetation Monitoring POC	Phil Beach (919) 789-9977
Wetland Monitoring POC	N/A

Table IV. Project Background Table							
Horse Creek (Wake Forest Country Club) / EEP Project Number 71082							
	Horse Creek	UT to Horse Creek					
Project County	Wake	Wake					
Drainage Area	7.9 square miles	1.6 square miles					
Drainage impervious cover estimate (%)	7.8%	<5%					
Stream Order	3 rd	1 st					
Physiographic Region	Piedmont	Piedmont					
Ecoregion	45f	45f					
Rosgen Classification of As- built	C5	E5					
Cowardin Classification	N/A	N/A					
Dominant soil types	Chewacla	Chewacla					
Reference site ID	Little Beaver Dam	UT to Barton Creek					
USGS HUC for Project and Reference	03020102	03020102					
NCDWQ Sub-basin for Project and Reference	03-04-01	03-04-01					
NCDWQ classification for Project and Reference	WS-IV	WS-IV					
Any portion of any project segment 303d listed?	No	No					
Any portion of any project segment upstream of a 303d listed segment?	No	No					
Reasons for 303d listing or stressor	N/a	N/A					
% of project easement fenced	0	0					
% of project easement demarcated with bollards (if not fenced)	0	0					

2.0 **PROJECT MONITORING METHODOLOGY**

2.1 <u>Vegetation Methodology</u>

The following methodology was used for the stem count. The configuration of the seven (7) vegetation plots was marked out with tape to measure 10 meters by 10 meters (or equivalent to 100 square meters) depending on buffer width. The planted and naturalized woody material in the plot was marked with flagging. Plot inventories were conducted per the 2006 CVS-EEP Level II Protocol for Recording Vegetation (EEP 2006).In 2007, EEP requested that only vegetation plots C, E, F, I, K, L, and O be monitored. These plots were carried forward for the 2008 monitoring year.

2.2 <u>Stream Methodology</u>

The project monitoring for the stream channel included a longitudinal survey, cross-sectional surveys, and photo documentation. These measurements were taken at each reach. The stationing was based on thalweg. The methodology for each portion of the stream monitoring is described in detail below.

2.2.1 Longitudinal Profile and Plan View

A longitudinal profile was surveyed for both reaches with a Nikon DTM-520 Total Station, prism, and a TDS Recon Pocket PC. The heads of features (i.e., riffles, runs, and pools) were surveyed, as well as the point of maximum depth of each pool, boundaries of problem areas, and any other significant slope-breaks or points of interest. At the head of each feature and maximum pool depth, the thalweg, water surface, edge of water, left and right bankfull, and left and right top of bank (if different than bankfull) were surveyed. All profile measurements were extracted from this survey, including channel and valley length and length of each feature, water surface slope for each reach and feature, bankfull slope for the reach, and pool spacing. This survey also was used to draw plan view figures with Microstation v8 (Bentley Systems, Inc., Exton, PA) for each reach, and all pattern measurements (i.e. meander length, radius of curvature, belt width, meander width ratio, and sinuosity) were extracted from the plan view. Stationing was calculated along the thalweg.

2.2.2 Permanent Cross Sections

Six permanent cross sections (three riffles and three pools) were surveyed along Horse Creek and two permanent cross sections (one riffle and one pool) were surveyed along the UT. The beginning (i.e., left bank facing downstream) and end of each permanent cross section were originally marked with a wooden stake and metal conduit. Cross sections were installed perpendicular to the stream flow. Each survey noted all changes in slope, tops of both banks, left and right bankfull, edges of water, thalweg, and water surface. The cross sections were then plotted, and Monitoring Year 3 data was overlain on Monitoring Years 0 and 2 for comparison. Monitoring Year 1 cross sections were not included per a 2007 EEP comment asking SEPI to remove these from the overlay figures based on the low survey accuracy. All dimension parameters (i.e. bankfull width, floodprone width, bankfull mean depth, cross sectional area, width-to-depth ratio, entrenchment ratio, bank height ratio, wetted perimeter, and hydraulic radius) were extracted from these plots and compared to data from all previous monitoring years.

2.2.3 Pebble Counts

Based on the fact that Horse Creek and UT to Horse Creek are sandbed streams, it was determined that pebble counts were unnecessary as they would fail to detect increases in fine sediments. Therefore, pebble counts were not performed for Monitoring Year 3.

2.3 <u>Photo Documentation</u>

Permanent photo points were established during Monitoring Year 1. A set of three photographs (facing upstream, facing downstream, and facing the channel) were taken at each photo point with a digital camera. Two photographs were taken at each cross-section (facing upstream and downstream). A representative photograph of each vegetation plot was taken southern-most corner closest to the channel.

3.0 PROJECT CONDITION AND MONITORING RESULTS

3.1 <u>Vegetation Assessment</u>

3.1.1 Soils Data

Preliminary Soil Data								
Max % Clay on Series Depth (in.) % Clay on Surface K T								
Chewacla (Cm)	65	10.0 27.0	0.28	5	1.0-4.0			

The UT to Horse Creek flows through Mantachie, Wehadkee, and Chewacla soils. Other than Chewacla, the information needed to complete the Preliminary Soil Data Table was unavailable, so short descriptions of the remaining soil type follows.

Mantachie (Me) soils have good infiltration and slow to medium surface runoff. Flooding is frequent but of short duration. These soils are generally located in depressions and draws in the uplands and have 0 to 4 percent slopes.

Wehadkee (Wn) silt loam is a poorly drained soil with 0 to 2 percent slopes on the flood plains of streams. Infiltration is good and surface runoff is slow to ponded. This soil is wet and subject to overflow and ponding.

3.1.2 Vegetative Problem Area Plan View

There is good herbaceous vegetation growth along all portions of the project not impacted by past golf course maintenance practices. The most extensive vegetation problem areas were long sections of past-mowed floodplain that had been mowed as part of regular fairway maintenance before the country club closed. These areas are located along the upper two thirds of the Horse Creek mainstem and along the entire UT section. Vegetation plots (VP) impacted by this maintenance include: C, E, I, and O. Since the golf course was closed and maintenance ceased vegetative growth in these areas has started recovering, however species diversity is significantly lower in these areas compared to the unimpacted areas of the project. For example, very few, if any, woody stems can be found in the past-mowed areas. Supplemental plantings may be necessary to boost succession in these areas. In addition, the lower portion of the mainstem Horse Creek has been invaded by stands of Chinese Privet (*Ligustrum sinense*). These areas will be monitoring closely in future monitoring years to document the spread of this population.

3.1.3 Stem Counts

Those vegetation plots with little or no impact from past mowing (i.e., vegetation plots F, I, K, and L) have planted stem densities above the Monitoring Year 5 goal of 260 stems/acre and are of no concern at this point. The remaining plots (i.e., VP C, E, and O) have densities below 260 stems/acre. However, if natural volunteer stems are included in the density calculations, all vegetation plots pass the Monitoring Year 5 stem density goal. Therefore, planted stem densities of less than the Monitoring Year 5 goal should not be interpreted as an indication of the species being completely inappropriate, or the growing conditions being severely inhospitable. In fact, the evidence of naturalization of volunteer stems suggests the growing conditions are suitable for good herbaceous and woody vegetative growth without supplemental plantings. However,

supplemental plantings may be necessary to boost species diversity and/or the prevalence of a certain target species.

Few planted stems were located in VP C, E, and O. The densities in these plots are below 260 stems/acre. Vegetation plot I is a "watch" area based on a planted stem density of 364 stems/acre. As described in Section 3.1.2, the main impact to the vegetation plots with low stem densities was past-mowing practices. The fact that stem densities of all plots are above the Monitoring Year 5 goal if natural volunteer stems are included serves as evidence that these plots are starting to recover from the past-mowing. It is expected that good recruitment of natural volunteer species from surrounding areas will occurr.

3.2 <u>Stream Assessment</u>

Considering the 5 year timeframe of standard mitigation monitoring, restored streams should demonstrate morphologic stability in order to be considered successful. Stability does not equate to an absence of change, but rather to sustainable rates of change or stable patterns of variation. Restored streams often demonstrate some level of initial adjustment in the several months that follow construction and some change/variation subsequent to that is to also be expected. However, the observed change should not indicate a high rate or be unidirectional over time such that a robust trend is evident. If some trend is evident, it should be very modest or indicate migration to another stable form. Examples of the latter include depositional processes resulting in the development of constructive features on the banks and floodplain, such as an inner berm, slight channel narrowing, modest natural levees, and general floodplain deposition. Annual variation is to be expected, but over time this should demonstrate maintenance around some acceptable central tendency while also demonstrating consistency or a reduction in the amplitude of variation. Lastly, all of this must be evaluated in the context of hydrologic events to which the system is exposed over the monitoring period.

For channel dimension, cross-sectional overlays and key parameters such as cross-sectional area and the channel's width to depth ratio should demonstrate modest overall change and patterns of variation that are in keeping with above. For the channels' profile, the reach under assessment should not demonstrate any consistent trends in thalweg aggradation or degradation over any significant continuous portion of its length. Over the monitoring period, the profile should also demonstrate the maintenance or development of bedform (facets) more in keeping with reference level diversity and distributions for the stream type in question. It should also provide a meaningful contrast in terms of bedform diversity against the pre-existing condition. Bedform distributions, riffle/pool lengths and slopes will vary, but should do so with maintenance around design/As-built distributions. This requires that the majority of pools are maintained at greater depths with lower water surface slopes and riffles are shallow with greater water surface slopes. Substrate measurements should indicate the progression towards, or the maintenance of, the known distributions from the design phase.

In addition to these geomorphic criteria, a minimum of two bankfull events must be documented during separate monitoring years within the five year monitoring period for the monitoring to be considered complete. Table VIII documents all bankfull events recorded since the start of Monitoring Year 1.

	Table V. Verification of Bankfull Events						
Date of Data Collection	Data Occurrence						
7/31/2006	6/14/2006	Large amount of fresh sediment observed on floodplain. Event observed by golf course personnel.	None				
6/3/2007	6/3/2007	Result of approximate 1.5" rainfall event. Wrack lines observed.	None				
6/30/2008	7/1/2008	According to NCDC Station Coop ID 312993 - FALLS LAKE, NC, 2.08 inches of precipitation fell over this 48 hour period. It was assumed, but not verified, that this rainfall produced a bankfull event.	None				
9/6/2008	9/7/2008	According to NCDC Station Coop ID 312993 - FALLS LAKE, NC, 4.37 inches of precipitation fell over this 48 hour period. It was assumed, but not verified, that this rainfall produced a bankfull event.	None				

3.2.1 Longitudinal Profile and Plan View

The overall water surface slope for both streams remained consistent since Monitoring Year 2. The main development in Monitoring Year 3 has been the building of beaver dams at 4 locations along the Horse Creek mainstem. These dams have effectively caused an increase in total pool length of 30% in mainstem Horse Creek reach (i.e., from 2,028 ft to 2,626 ft) and reduced the total length of riffle habitat by 43% (i.e., from 585 ft to 331 ft) between Monitoring Years 2 and 3. Median pool length increased from 57.4 ft to 89.9 ft, and median riffle length decreased from 20.3 ft to 12.2 ft between Monitoring Years 2 and 3. In addition, water surface slopes of the remaining riffles have increased as a result of the beaver dams (i.e., slope increased as a function of decreased riffle length).

Overall, the UT reach profile has remained vertically stable. There is one area between Stations 14+18 and 15+14 where the bed appears to have risen since Monitoring Year 1. However, the amount of elevational change between Monitoring Years 2 and 3 appears to be much less than the initial rise. The only observable change to note about this area for this year is that this aggradation has extended downstream for an additional 48 feet. There is no obvious reason for this aggradation, however, one potential explanation is the drought that occurred in 2007. The drought left the UT channel dry most of the time, allowing grass to cover the entire channel along this aggradation section. The grass probably aided in the collection of excess fine sediments on the streambed. There also is a headcut located at Station 10+59 along the UT; however, it appears to have stabilized as it has not proceeded any further upstream since Monitoring Year 2.

It appears, based on the consistency of the pattern parameters and the plan view overlay between monitoring years, that the overall pattern of Horse Creek and UT Horse Creek has remained stable. The longitudinal profile is shown in Appendix B5 and the problem area plan views are located in Appendix C.

3.2.2 Permanent Cross Sections

All cross sections were fairly consistent between monitoring years. All cross sections displayed at least a small amount of channel bed shifting, however, this result is nothing out of the ordinary for a sand-bed stream. Profiles of these types of streams tend to be very dynamic. It appears that the downcutting of the lower section of Horse Creek, observed in Monitoring Year 2, has slowed or ceased in Monitoring Year 3. None of the cross sections overlay figures show any significant evidence of downcutting between Monitoring Years 2 and 3, and the longitudinal profile from Monitoring Year 3 was consistent with Montioring Year 2. It appears that most of this

downcutting occurred between Monitoring Years 0 and 2. This downcutting may be one of the causes of the significant amount of on-going bank erosion observed in this section of the project (i.e. as stream downcuts width/depth ratio decreases, leaving the reach prone to widening). The cross-section graphs are located in Appendix B4.

3.2.3 Pebble Counts

Based on the fact that Horse Creek and UT to Horse Creek are sandbed streams, it was determined that pebble counts were unnecessary as they would fail to detect increases in fine sediments. Therefore, pebble counts were not performed for Monitoring Year 3.

3.2.4 Stream Problem Areas

Table X, located in Appendix B3, describes the problem areas, station numbers, and respective probable causes. The most major problem along mainstem Horse Creek was the slumping of banks along the bottom third of the reach. Most bank erosion upstream of the UT Horse Creek confluence has healed over with new vegetation. Much of the bank erosion observed in the lower mainstem was rated severe. It appears that the main causes of erosion were a lack of deeply rooted vegetation at stress points, soil stablility, bank angle, and/or overwidening due to possible downcutting along this section of the project. In addition, beaver dams have been a new development in Monitoring Year 3. There are four dams, located at Stations 10+98, 11+66, 22+56, and 25+14. As described in Section 3.2.1, the result has been an 30% increase in the total length of pool habitat and a 43% reduction in total length of riffle habitat. In addition, median pool length and median riffle slope have both increased, and median riffle length has decreased, presumably as a result of beaver damming. In addition, there were two problem crossvanes and two problem j-hooks noted in Monitoring Year 3. The most severe of these was a crossvane located at Station 34+07 where piping and back arm scour of the right arm (facing downstream). The crossvane located at Station 34+91 had significant piping and back arm scour of the left arm (facing downstream). The problem j-hooks are located at Stations 36+28 and 37+07 and had piping of water/scour around a piece of the structure.

The most major problem to note along UT Horse Creek was a long section of aggradation between Stations 14+18 and 15+14. This area will be observed during future monitoring efforts. In addition, the crossvane at Station 12+27 along UT Horse Creek has piping of water around the right arm (facing downstream), a rock missing from the right arm, and the pool is filled in with sediment. The other two crossvanes (i.e., Station 12+75 and 14+00) both have piping of water around or under a piece of the structure. The stream problem area plan view, located in Appendix C, shows the locations and severity of these problem area.

Table VII a. Categorical Stream Feature Visual Stability Assessment									
Horse Creek									
Segment/Reach: Mainstem									
FeatureInitialMY-01MY-02MY-03MY-04MY-05									
A. Riffles	65%	59%	73%	57%					
B. Pools	50%	54%	90%	87%					
C. Thalweg	80%	74%	94%	100%					
D. Meanders	80%	70%	64%	77%					
E. Bed General	95%	93%	96%	100%					
F. Bank Condition	*	*	85%	88%					
G. Vanes / J Hooks etc.	60%	60%	94%	93%					
H. Wads and Boulders	NA	NA	NA	NA					

*Data not reported in past reports.

Table VII b. Categorical Stream Feature Visual Stability Assessment									
Horse Creek									
Segment/Reach: Unnamed Tributary									
FeatureInitialMY-01MY-02MY-03MY-04MY-05									
A. Riffles	90%	90%	83%	95%					
B. Pools	80%	83%	92%	100%					
C. Thalweg	100%	100%	100%	100%					
D. Meanders	100%	100%	97%	97%					
E. Bed General	100%	100%	92%	89%					
F. Bank Condition	*	*	94%	100%					
G. Vanes / J Hooks etc.	*	*	83%	58%					
H. Wads and Boulders	NA	NA	NA	NA					

*Data not reported in past reports.

3.3 Photo Documentation

Photos taken of the vegetation problem areas and photos of the vegetation plots are in Appendix A. Stream problem area photographs are provided in Appendix B. The photographs taken at the marked photo point locations and at the cross-sections are provided in Appendix B.

4.0 **RECOMMENDATIONS AND CONCLUSIONS**

Overall, monitoring for Monitoring Year 3 showed that the Horse Creek mainstem section had a stable dimension and pattern, with the exception of extensive areas of bank slumping. The bank slumping areas were mainly concentrated downstream of Station 26+25. The major bank slumping areas may need maintenance and will be observed closely during Monitoring Year 4. In addition there are two crossvanes and two J-hooks that have piping and/or backarm scour that may be in need of repair. There have been some apparent changes in profile, presumably as a result of the construction of beaver dams in Monitoring Year 3. The result of this damming has been an 30% increase in the total length of pool habitat and a 43% reduction in total length of riffle habitat. In addition, median pool length and median riffle slope have both increased, and median riffle length has decreased. However, it should be noted that the overall water surface remained consistent in Monitoring Year 3.

The UT Horse Creek reach has remained stable for Monitoring year 3. The headcut observed in Monitoring Year 2, located at Station 10+59, has not progressed upstream, and is not considered to be a concern at this time. However, this headcut will be observed closely during Monitoring Year 4. A long aggradational section toward the downstream end of the reach may need attention as it appears to have extended downstream by an additional 48 feet. In addition, all three crossvanes had water piping around and/or under some part of the structure. The crossvane located at Station 12+27 along UT Horse Creek has piping of water around the right arm (facing downstream), a rock missing from the right arm, and the pool is filled in with sediment. This crossvane may warrant repair assessment.

The most extensive vegetation problem areas were long sections of past-mowed floodplain that had been mowed as part of regular fairway maintenance before the country club closed. These areas are located along the upper two thirds of the Horse Creek mainstem and along the entire UT section. It should be noted that, since the golf course was closed and maintenance of fairways and play-through areas has ceased, it is visually apparent that vegetative growth in these areas has started recovering; however, species diversity is still significantly lower in these areas compared to the unimpacted areas of the project. For example, very few, if any, woody stems can be found in the past-mowed areas. Supplemental plantings may be necessary to boost succession in these areas. In addition, the lower portion of the mainstem Horse Creek has been invaded by stands of Chinese Privet (*Ligustrum sinense*). These areas will be monitoring closely in future monitoring years to document the spread of this population.

There are several concern areas with regard to the vegetation plots. The plots impacted by pastmowing (i.e., VP C, E, and O) have densities below 260 stems/acre (Monitoring Year 5 stem density goal). However, if natural volunteer stems are included in the density calculations, all vegetation plots pass the Monitoring Year 5 stem density goal. Therefore, planted stem densities of less than the Monitoring Year 5 goal should not be interpreted as an indication of the species being completely inappropriate, or the growing conditions being severely inhospitable. In fact, the evidence of naturalization of volunteer stems suggests the growing conditions are suitable for good herbaceous and woody vegetative growth without supplemental plantings. However, supplemental plantings may be necessary to boost species diversity and/or the prevalence of a certain target species.

REFERENCES

- Dewberry & Davis. September 2002. Stream Restoration Plan Horse Creek at Wake Forest Country Club. November 2003
- Dewberry & Davis. Horse Creek Stream Restoration Monitoring Report EEP Project Number 71082 Monitoring Year – 01 200. September 2006
- DeLorme. 1997. The North Carolina Atlas and Gazateer.
- Harman, W.H., et al. 1999. Bankfull Hydraulic Geometry Relationships for North Carolina Streams. AWRA Wildland Hydrology Symposium Proceedings. Edited by D.S. Olson and J.P. Potyondy. AWRA Summer Synposium. Bozeman, MT.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2006. *CVS-EEP Protocol for Recording Vegetation*. Available at < <u>http://cvs.bio.unc.edu/protocol/cvs-eep-manual-v4_lev1-</u> <u>2.pdf</u>>. 11 pp.
- North Carolina Ecosystem Enhancement Program. September 2005. Content, Format and Data Requirements for EEP Monitoring Reports.
- Rosgen, D.L. 1994. A Classification of Natural River. Catena, Volume 22: 166-169.
- SEPI Engineering Group. January 2008. Horse Creek (Wake Forest Country Club) Final Monitoring Report Year 2 of 5 2007.
- U.S. Department of Army, Corps of Engineers. 2003. *Stream Mitigation Guidelines*. <u>http://www.saw.usace.army.mil/wetlands/Mitigation/stream_mitigation.html</u>

APPENDIX A1

VEGETATION DATA TABLES

Report Prepared By	PHILIP BEACH
Date Prepared	11/24/2008 9:44
database name	WFCC CVS Data 2008.mdb
database location	G:\Environmental\EN08.004 - EEP Monitoring 2008-09\CVS-EEP DATABASE - 2008 VERSION
computer name	W08
DESCRIPTION OF WORKSHEETS	IN THIS DOCUMENT
Metadata	This worksheet, which is a summary of the project and the project data.
	Each project is listed with its PLANTED stems, for each year. This excludes live stakes and lists stems
Proj, planted	per acre.
	Each project is listed with its TOTAL stems, for each year. This includes live stakes, all planted stems,
Proj, total stems	and all natural/volunteer stems. Listed in stems per acre.
Plots	List of plots surveyed.
Vigor	Frequency distribution of vigor classes.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
	List of most frequent damage classes with number of occurrences and percent of total stems impacted by
Damage	each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	Count of total living stems of each species (planted and natural volunteers combined) for each plot; dead
ALL Stems by Plot and spp	and missing stems are excluded.
PROJECT SUMMARY	
Project Code	WFGC 08
project Name	WFGC
Description	WFGC CVS MONITORING 2008
River Basin	Neuse
length(ft)	3,502 (as-built)
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	7
Sampled Plots	7

	Species	4	3	2	1	0	Missing
	Acer saccharinum		2				3
	Aronia arbutifolia		1				1
	Baccharis halimifolia	8					1
	Betula nigra	1	9				5
	Cephalanthus occidentalis						1
	Cornus alternifolia				1		
	Diospyros virginiana						1
	Fraxinus pennsylvanica	1	3	2			6
	llex verticillata	1					
	Juglans nigra		1	1			
	Liquidambar styraciflua	12	10				9
	Pinus taeda	7	1				2
	Quercus georgiana	1					
	Salix nigra	1	1				
	Sambucus canadensis	2	1		1		
	Sassafras albidum	1					
	Ulmus alata		1				3
	Morella cerifera	2					
	Malus angustifolia		1				
	Carpinus caroliniana						6
	Magnolia virginiana			1			
	Platanus occidentalis	1	12				16
	Prunus serotina	1	3		1		4
TOT:	23	39	46	4	3		58

Vigor By Species - WFCC 2008 (Monitoring Year 3)

Damage By Species - WFCC 2008 (Monitoring Year 3)

Dama	ge By Species - WFCC 200		nitor	ing	rea	r 3)				
			onitor	naoci deoci		/		- Inc Tr.	ampleo	lie Strangulation
	Soeces	AN X	ue ou	B. 0a	Chi.	<u>}</u>	Hille	ueur ueur	S) 1. 1.	5
	Acer saccharinum	5	5				1	1		
	Aronia arbutifolia	2	2							
	Baccharis halimifolia	9	9							
	Betula nigra	15	8			1		6		
	Carpinus caroliniana	6	6							
	Cephalanthus occidentalis	1	1							
	Cornus alternifolia	1						1		
	Diospyros virginiana	1	1							
	Fraxinus pennsylvanica	12	8					4		
	llex verticillata	1	1							
	Juglans nigra	2	1					1		
	Liquidambar styraciflua	31	28					3		
	Magnolia virginiana	1		1						
	Malus angustifolia	1						1		
	Morella cerifera	2	2							
	Pinus taeda	10	10							
	Platanus occidentalis	29	17		2			10		
	Prunus serotina	9	6					2	1	
	Quercus georgiana	1	1							
	Salix nigra	2			1			1		
	Sambucus canadensis	4	2			1		1		
	Sassafras albidum	1	1							
	Ulmus alata	4	3					1		
TOT:	23	150	110	1	3	2	1	32	1	

Dama	ge By Plot - WFCC 2008	3 (Mo	nitor	ing	Yea	r 3)				
	blot	411.5	(no de C	Base damage gori	Cindrer Cel ne	73	H.,	In an Tr	Vicets ampled	ne Stiangulation
	WFGC 08-01-C-year:3	4	4							[
	WFGC 08-01-E-year:3	8	7					1]
	WFGC 08-01-F-year:3	39	28	1				9	1	
	WFGC 08-01-I-year:3	10	9					1		
	WFGC 08-01-K-year:3	56	39		2		1	14]
	WFGC 08-01-L-year:3	30	20		1	2		7		
	WFGC 08-01-O-year:3	3	3							
TOT:	7	150	110	1	3	2	1	32	1	

Planted Stems By Plot and Sp	ecie	es - I	WFCC	200)8 (N	<i>l</i> loni	toriı	ng Y	'ear	3)	
			Stems	Dic. Stems		010, 11, 08, 07, 0	FGC 00. 5. Vear. 3	FGA 07. F 10 2 2	Dha WEG 08.07.1 Pear.2	FGC 00. 1. Vedr. 3	08.07.1. Vehr.3
Soecies	/.č	10/2	ŏ/ ×	\$/`š	<u>x</u> 5/3	2 5/3	× 5/3	$\frac{3}{5}$	<u>×</u> 5/3	$\frac{x}{5}$	2/5/
	<u>/~</u>	/ *	<u>}</u>	/ ୧	/ ୧	<u>⁄ </u>	/ ୧	<u> </u>	/ ୧	/ ୧	{
Acer saccharinum	2	1	۷ ک					2			
Aronia arbutifolia	1	1	1			1					
Baccharis halimifolia	8	3	2.67			5	1	2			
Betula nigra	10	2	5						9	1	
Cornus alternifolia	1	1	1			1		4			
Fraxinus pennsylvanica	6	3	2			4		1	1		
llex verticillata	1	1	1			1					
Juglans nigra	2	1	2			2					ļ
Liquidambar styraciflua	22	5	4.4	1	2	6		7	6		l l
Magnolia virginiana	1	1	1			1					
Malus angustifolia	1	1	1			1					
Morella cerifera	2	1	2				2				
Pinus taeda	8	4	2				5	1	1	1	
Platanus occidentalis	13	5	2.6		1	1	1	9	1		1
Prunus serotina	5	2	2.5		2	3					
Quercus georgiana	1	1	1	1							1
Salix nigra	2	1	2					2			
Sambucus canadensis	4	3	1.33	2		1			1		
Sassafras albidum	1	1	1							1	
Ulmus alata	1	1	1					1			
TOT: 20	92	20		4	5	27	9	25	19	3	J

	Table 6. Vegetative P	roblem Areas		
Feature/Issue	Station # / Range	Probable Cause	Photo #	
Past mowing				
maintenance (Horse	Multiple Sections from 10+00 to	Past fairway maintenance		
Creek)	35+96, both sides	(mowing)	1	
Past mowing		Past fairway maintenance		
maintenance (UT)	Entire Reach, both sides	(mowing)		
Past mowing				
maintenance (Horse		Past fairway maintenance		
Creek)	16+56 (Left Bank)	(mowing)	3	
Chinese privet	Station 33+68 to 44+10	Invasive vegetative opportunism		
(Ligustrum sinense)	(Left Bank)			
growth- Horse Creek			2	
Chinese privet	Station 37+93 to 39+69	Invasive vegetative opportunism		
(Ligustrum sinense)	(Left Bank)			
growth- Horse Creek				
Chinese privet	Station 38+11 to 39+69	Invasive vegetative opportunism		
(Ligustrum sinense)	(Right Bank)			
growth- Horse Creek				

APPENDIX A2

PHOTOLOG VEGETATION PROBLEM AREAS

APPENDIX A2 PHOTOLOG – HORSE CREEK (WAKE FOREST COUNTRY CLUB)

PROBLEM AREAS (Vegetation)

Photo 1: Representative past mowed/maintained floodplain problem area (Approximate Station 11+00 view upstream along main stem; 2-15-2008).

Photo 2. Representative *Ligustrum sinense* (Chinese privet) problem area (Station 33+68; privet is in background above shrub level; 9-30-2008).

Photo 3. Representative bare bench/bank problem area (Station 16+56; view of left bank on main stem; 9-30-2008).

APPENDIX A3

PHOTOLOG VEGETATION PLOTS

APPENDIX A3 PHOTOLOG HORSE CREEK (WAKE FOREST COUNTRY CLUB)

VEGETATION PLOTS

Photo 1: Vegetation Plot C (10-15-2008).

Photo 3: Vegetation Plot F (10-15-2008).

Photo 5: Vegetation Plot K (10-16-2008).

Photo 2: Vegetation Plot E (10-15-2008).

Photo 4: Vegetation Plot I (10-15-2008).

Photo 6: Vegetation Plot L (10-29-2008).

Photo 7: Vegetation Plot O (10-16-2008).

APPENDIX B1

PHOTOLOG STREAM PROBLEM AREAS

APPENDIX B1 PHOTOLOG – HORSE CREEK (WAKE FOREST COUNTRY CLUB)

STREAM PROBLEM AREAS

Photo 1: Representative beaver-dam problem area (Station 10+98; view downstream along Horse Creek; 9-30-2008).

Photo 2: Representative severe bank erosion problem area (Station 29+65; view upstream of right bank along Horse Creek; 10-15-2008).

Photo 3: Representative severe bank erosion problem area (Station 34+28; view upstream of left bank along Horse Creek; 10-29-2008).

Photo 4: Representative cross-vane problem area, Horse Creek (Station 34+91 view downstream of piping on right arm; 2-15-2008).

Photo 5: Representative j-hook problem area, Horse Creek (Station 37+07 view upstream of piping along left side of structure; 2-15-2008).

APPENDIX B2

PHOTOLOG OF CROSS-SECTIONS AND PHOTO POINTS

APPENDIX B2 PHOTOLOG –HORSE CREEK (WAKE FOREST COUNTRY CLUB)

CROSS-SECTIONS & PHOTOPOINTS

Cross-Section 1: View downstream. Horse Creek (9-30-2008). Note beaver dam at Station 10+98.

Cross-Section 2: View Downstream. Horse Creek (10-28-2008)

Cross-Section 3: View downstream. Horse Creek (10-28-2008). Note beaver dam at Station 25+14.

Horse Creek - Monitoring Year 3 Photolog – Cross Sections & Photopoints (Horse Creek)

Cross-Section 1: View upstream. Horse Creek (9-30-2008). Note beaver dam at Station 10+98.

Cross-Section 2: View upstream. Horse Creek (10-28-2008)

Cross-Section 3: View upstream. Horse Creek (10-28-2008). Note beaver dam at Station 25+14.

Appendix B2 Page 1 of 7

Cross-Section 4: View downstream. Horse Creek (10-29-2008).

Cross-Section 5: View downstream. Horse Creek (10-29-2008).

Cross-Section 6: View downstream. Horse Creek (10-29-2008).

Cross-Section 4: View upstream. Horse Creek (10-29-2008).

Cross-Section 5: View upstream. Horse Creek (10-29-2008).

Cross-Section 6: View upstream. Horse Creek (10-29-2008).

Cross-Section 7: View downstream. UT Horse Creek (10-30-2008).

Cross-Section 8: View downstream. UT Horse Creek (10-30-2008).

Photo-Point 1: View downstream. Horse Creek (9-30-2008).

Cross-Section 7: View upstream. UT Horse Creek (10-30-2008).

Cross-Section 8: View upstream. UT Horse Creek (10-30-2008).

Photo-Point 1: View upstream. Horse Creek (9-30-2008).

Photo-Point 2: View downstream. Horse Creek (9-30-2008).

Photo-Point 3: View downstream Horse Creek. (9-30-2008)

Photo-Point 4: View downstream. Horse Creek (9-30-2008).

Photo-Point 2: View upstream. Horse Creek (9-30-2008).

Photo-Point 3: View upstream Horse Creek. (9-30-2008)

Photo-Point 4: View upstream. Horse Creek (9-30-2008).

Photo-Point 5a: View downstream. UT Horse Creek (10-16-2008).

Photo-Point 5b: View downstream. Horse Creek (10-28-2008).

Photo-Point 6: View downstream. Horse Creek (10-16-2008).

Photo-Point 5a: View upstream. UT Horse Creek (10-16-2008).

Photo-Point 5b: View upstream. Horse Creek (10-28-2008).

Photo-Point 6: View upstream. Horse Creek (10-16-2008).

Photo-Point 7: View downstream. Horse Creek (10-16-2008).

Photo-Point 8: View downstream. Horse Creek (10-16-2008).

Photo-Point 9: View downstream. UT Horse Creek (10-16-2008).

Photo-Point 7: View upstream. Horse Creek (10-16-2008).

Photo-Point 8: View upstream. Horse Creek (10-16-2008).

Photo-Point 9: View upstream. UT Horse Creek (10-16-2008).

Photo-Point 10: View downstream. UT Horse Creek (10-16-2008).

Photo-Point 11: View downstream. UT Horse Creek (10-16-2008).

Photo-Point 10: View upstream. UT Horse Creek (10-16-2008).

Photo-Point 11: View upstream. UT Horse Creek (10-16-2008).

Photo-Point 12: View downstream. UT Horse Creek (10-16-2008).

Photo-Point 12: View upstream. UT Horse Creek (10-16-2008).

APPENDIX B3

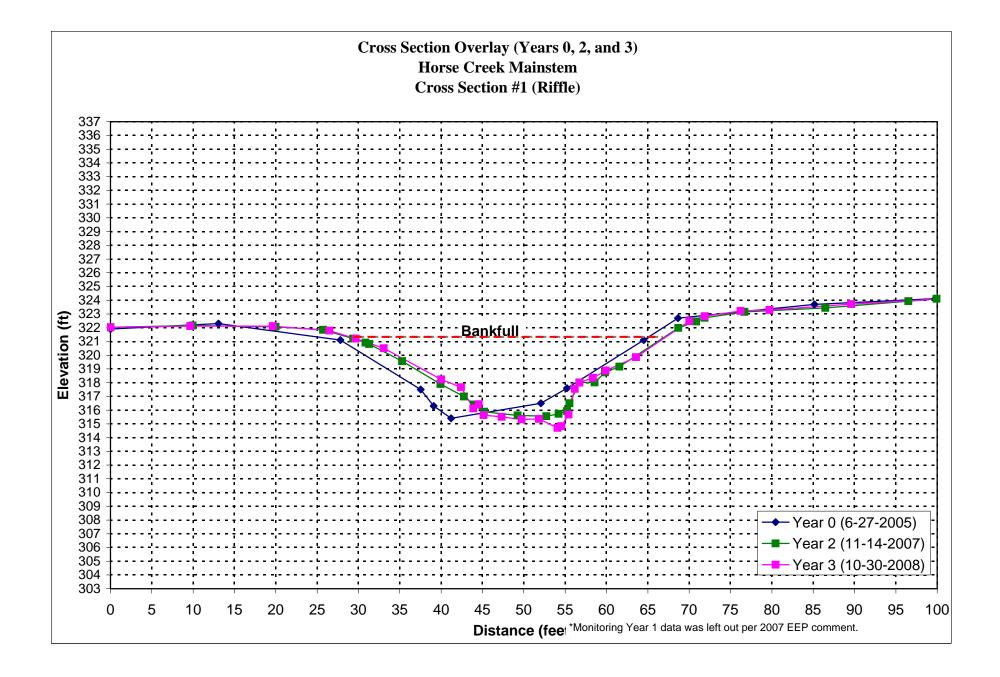
STREAM DATA TABLES

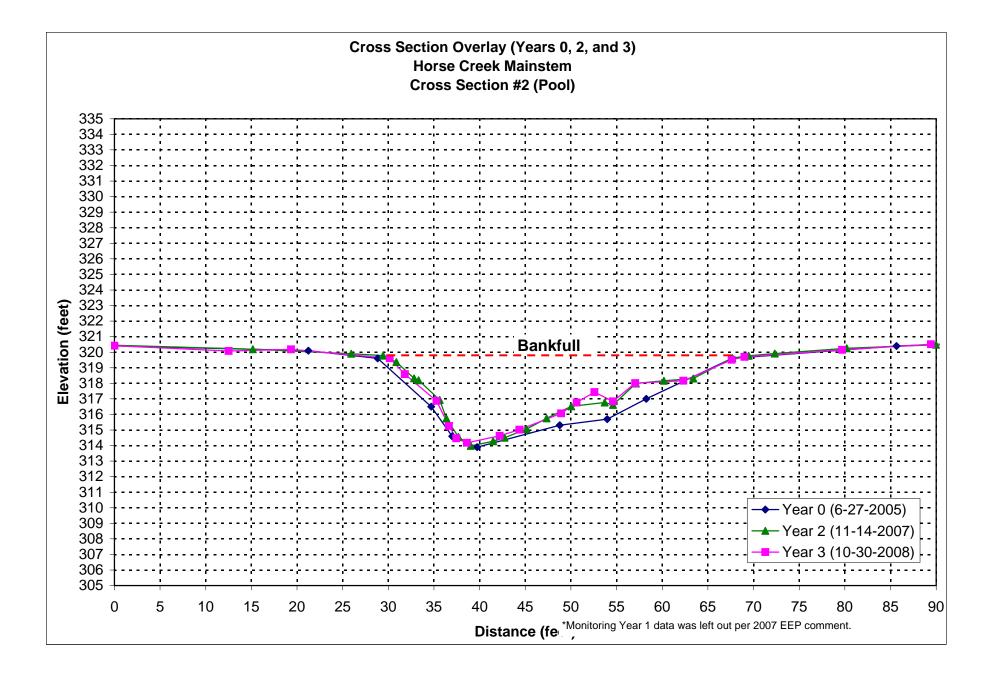
				Table	e VIII a.	Baselin	e Morpł	nology aı	nd Hydra	aulic Su	mmary							
						Но	rse Cree	ek - Mair	nstem									
						F	Project N	Number 4	435									
Parameter	USC	JSGS Gage Data Regional G Max Med Min M		al Curve	Interval	Pre-Ex	tisting Co	ondition	Proj	ect Refe Stream			Design			As-built		
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Dimension						11100						11100						liicu
BF Width (ft)	NA	NA	NA		31.2		20.1	38.8	32.6	16.8	28.2	27.6	36	36	36	36.7	38.6	37.4
Floodprone Width (ft)	NA	NA	NA	NA	NA	NA	407	700	599.3	200	200	200		>600			>600	
BFCross Sectional Area (ft)	NA	NA	NA		98.3		61.9	98.5	82.5	56.2	59	57.4	107	106.5	106.5	110.1	126	119
BF Mean Depth (ft)	NA	NA	NA		3.1		1.9	3.7	2.5	2.0	2.1	2.1	3.0	3.0	3.0	2.9	3.4	3.2
Max Depth (ft)	NA	NA	NA	NA	NA	NA	3.9	6.1	4.1	2.8	3.2	3.0	4.5	4.5	4.5	5.1	5.7	5.4
Width/Depth Ratio	NA	NA	NA	NA	NA	NA	6.4	20.5	11.3	12.8	14.2	13.3	12.2	12.2	12.2	10.8	13.5	11.8
Entrenchment Ratio	NA	NA	NA	NA	NA	NA	13	21.9	18.4	9.2	9.6	9.4	11.3	11.3	11.3	2.6	2.7	2.7
Bank Height Ratio	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Wetted Perimeter (ft)	NA	NA	NA	NA	NA	NA	32.7	60.5	40.6	36.2	89.5	56.0	37.6	38.6	38.1	34.3	41.0	37.7
Hydraulic radius (ft)	NA	NA	NA	NA	NA	NA	1.21	2.44	2.03	0.52	1.35	0.93	2.83	2.93	2.88	2.60	3.50	3.00
Pattern													0					
Channel Beltwidth (ft)	NA	NA	NA	NA	NA	NA	19	102	44	35	36	36	68	126	97	47	97	69
Radius of Curvature (ft)	NA	NA	NA	NA	NA	NA	4	137	30	13	53	25	70	144	107	32	132	76
Meander Wavelenght (ft)	NA	NA	NA	NA	NA	NA	24	261	94	100	112	106	108	216	162	131	369	212
Meander Width Ratio	NA	NA	NA	NA	NA	NA	0.8	8.0	2.9	3.6	4.1	3.8	3.0	6.0	4.5	3.5	9.9	5.7
Profile																		
Riffle length (ft)	NA	NA	NA	NA	NA	NA	7	57	25	11	42	27	5	50	29	5	59	22
Riffle slope (ft/ft)	NA	NA	NA	NA	NA	NA	0	0		0.011	0.01	0.013	0	0.032	0.008	0.003	0.09	0.03
Pool length (ft)	NA	NA	NA	NA	NA	NA	9.0	54.0	26.6	26.0	48.0	33.0	20.0	74.4	51.7	25.6	131.2	69.6
Pool spacing (ft)	NA	NA	NA	NA	NA	NA	18.0	97.5	50.2	37.0	102.0	69.5	44.0	144.0	94.0	37.5	324.6	129.3
Substrate																		
d50 (mm)	NA	NA	NA	NA	NA	NA		0.2			4.9			0.2			0.13	
d84 (mm)	NA	NA	NA	NA	NA	NA		2.3			16.5			2.3			0.5	
Additional Reach Parameters																		
Valley Length (ft)	NA	NA	NA	NA	NA	NA		2645			203			2645			2645	
Channel Length (ft)	NA	NA	NA	NA	NA	NA		2890			220			2885			2899	
Sinuosity	NA	NA	NA	NA	NA	NA		1.09			1.09			1.09			1.10	
Water Surface Slope (ft/ft)	NA	NA	NA	NA	NA	NA		0.0016		l	0.002	7						
BF slope (ft/ft)	NA	NA	NA	NA	NA	NA		0.0010										
1 \ /	NA	NA	NA	NA	NA	NA		C5/E5			 C4			C5/E5			 C5/E5	
Rosgen Classification *Habitat Index	NA NA	NA	NA	NA	NA	NA		C5/E5					NA	NA	NA		C5/E5	
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	 NA	NA	NA NA	NA	NA	NA	NA
*Macrobenthos	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA

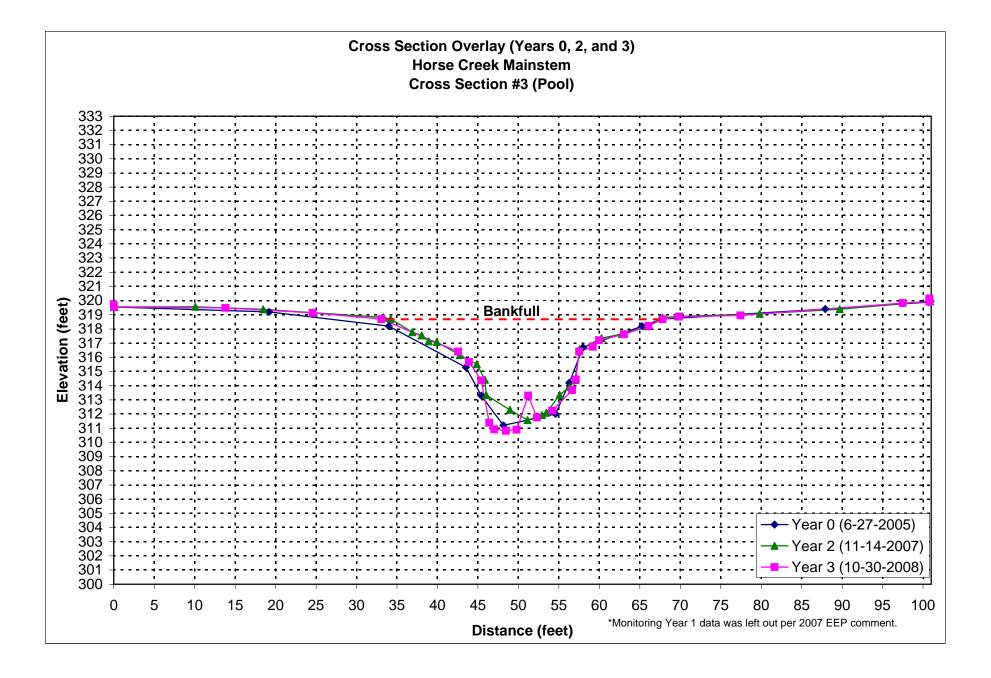
				Table	e VIII b.	Baselin	ne Morp	hology a	nd Hydr	aulic Su	mmary							
						Horse C	reek - U	nnamed	Tributa	ıry								
						I	Project N	Number 4	435									
Parameter	USC	SGS Gage Data Regio		Region	al Curve	Interval	Pre-Ex	cisting Co	ondition	Proj	ect Refe Stream			Design			As-built	t
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Dimension										1			1					
BF Width (ft)	NA	NA	NA		5.1		3.8	5.8	4.6	3.6	5.7	4.7	1		7.5	1	1	6.5
Floodprone Width (ft)	NA	NA	NA	NA	NA	NA	6.4	6.4	5.5	10.5	10.5	10.5		>200			>200	-
BFCross Sectional Area (ft)	NA	NA	NA		5.6		2.4	3.7	2.5	3.3	3.6	3.3			5.4			5.3
BF Mean Depth (ft)	NA	NA	NA		0.8		0.6	0.6	0.5	0.7	0.8	0.7			0.77			0.81
Max Depth (ft)	NA	NA	NA	NA	NA	NA	0.4	2.2	0.5	0.4	2.2	0.6			1.3			1.3
Width/Depth Ratio	NA	NA	NA	NA	NA	NA			8.4	4.4	6.6	5.5			9.7			8.0
Entrenchment Ratio	NA	NA	NA	NA	NA	NA			1.2	2.2	2.2	2.2			>20			>20
Bank Height Ratio	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Wetted Perimeter (ft)	NA	NA	NA	NA	NA	NA				14.2	28.3	21.2			8.6			10.4
Hydraulic radius (ft)	NA	NA	NA	NA	NA	NA				0.12	0.25	0.19			0.87			0.51
Pattern							0.4	10.1		10 0	10 0	(0 0	21.0	25.0				150
Channel Beltwidth (ft)	NA	NA	NA	NA	NA	NA	9.4	18.4	14.1	62.0	62.0	62.0	21.0	35.0	28.0	7.6	28.2	15.9
Radius of Curvature (ft)	NA	NA	NA	NA	NA	NA	8.8	38.9	18.7	3.5	23.6	13.5	14.0	35.0	22.5	15.8	61.0	31.2
Meander Wavelenght (ft)	NA	NA	NA	NA	NA	NA	38.2	88.4	57.2	18.0	32.0	25.0	28.0	53.0	40.5	54.1	107.2	81.4
Meander Width Ratio	NA	NA	NA	NA	NA	NA	8.3	19.2	12.4	3.8	6.8	5.3	3.7	4.7	5.4	5.8	11.5	8.6
Profile																		
Riffle length (ft)	NA	NA	NA	NA	NA	NA				8	20	15	4.0	20.0	10.2	92.0	215.2	151.4
Riffle slope (ft/ft)	NA	NA	NA	NA	NA	NA				0.033	0.060	0.045	0.100	0.325	0.119	0.024	0.043	0.031
Pool length (ft)	NA	NA	NA	NA	NA	NA				5	9	8	11.8	39.1	24.3	21.3	39.3	30.9
Pool spacing (ft)	NA	NA	NA	NA	NA	NA				17.4	35.1	23.1	5.3	9.8	7.5	150.9	273.4	212.2
Substrate																		
d50 (mm)	NA	NA	NA	NA	NA	NA		3.7			4.9			3.7			0.125	
d84 (mm)	NA	NA	NA	NA	NA	NA	I	20.4		I	74		1	20.4		1	0.5	
Additional Reach Parameters																		
Valley Length (ft)	NA	NA	NA	NA	NA	NA		591			68			479*		1	479*	
Channel Length (ft)	NA	NA	NA	NA	NA	NA		612		1	101		1	550			548	
Sinuosity	NA	NA	NA	NA	NA	NA		1.04		1	1.49		1	1.15			1.15	
Water Surface Slope (ft/ft)	NA	NA	NA	NA	NA	NA		0.017			0.0263	3						
BF slope (ft/ft)	NA	NA	NA	NA	NA	NA												
Rosgen Classification	NA	NA	NA	NA	NA	NA		G4c	1		E4		+	 E4	1	1	E4	
*Habitat Index	NA	NA	NA	NA	NA	NA								L4			L4	
*Macrobenthos	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

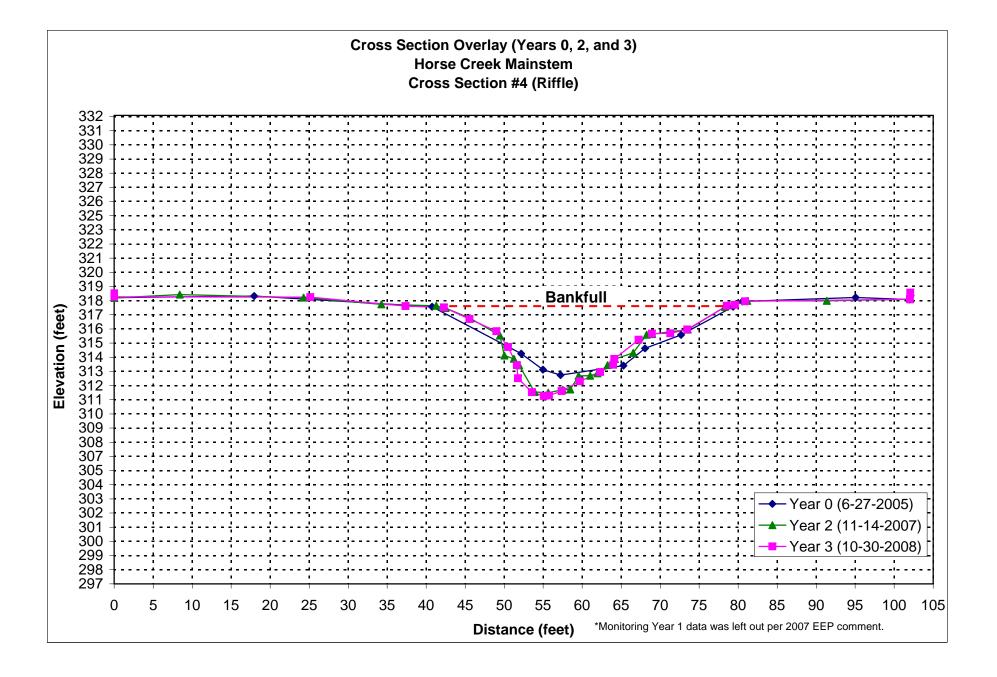
												Table I	X a. Mo		Horse	Hydrauli e Creek ach: Mai	ic Monitoring	Summa	ry															
Parameter		Cr	ross Sect	ion 1 Rif	fle				Cross Se	ction 2 P	ool			C	ross Sec	ction 3 Po	ool		Cr	oss Secti	ion 4 Ri	ffle			Ci	ross Sec	ction 5 P	ool			Cr	oss Sect	ion 6 R	ffle
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4 MY5	5 MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4 MY5
BF Width (ft)	37	40	37.3	37			39	39	37.7	38.6			31	33.2		34.8		39	38.9		38.4			34	39	35.1	35.1			37	35	32.6		
Floodporne Width (ft)	600+	600	100+	100+			600+	600	NA	NA			600+	600	NA	NA		600+	600	102+				600	600	NA	NA			600+			100+	
BFCross Sectional Area (ft)	120	131	118.3	118.1			126	101	104.5	103.5			99	98	101.3	110.1		110	96	111.3	112.1			95	97	101.6	99			126	78	95	100.5	
BF Mean Depth (ft)	3.3	3.3	3.2	3.2			3.2	2.6	2.8	2.7			3.2	2.9	3.0	3.2		2.9	2.5	3.1	2.9			2.8	2.5	2.9	2.8			3.4	2.2	2.9	3	
Width/Depth Ratio	11	12.2	11.8	11.6			12	15	NA	NA			9.9	11.2	NA	NA		14	16	11.9	13.2			12	16	NA	NA			11	16	11.2	11.1	
Entrenchment Ratio	2.7+	2.4	2.7+	2.7+				2.2	NA	NA				2.6	NA	NA		2.6+	2.2	2.8+	2.6+				1.9	NA	NA			2.7+	2.4	3.1+	3.0+	
Bank Height Ratio	1	1	1	1.09			1	1	NA	NA			1	1	NA	NA		1	1	1	1.01			1	1	NA	NA			1	1	1	1.03	
Wetted Perimeter (ft)	34	42	40	41			41	42	40.5	41.4			36	36	38.2	43		40	40	40.3	42.2			36	42	39	39			39	37	36.9	38.6	
Hydraulic radius (ft)	3.5	3.1	3	2.9			3.1	2.4	2.6	2.5			2.8	2.6	2.7	2.6		2.7	2.4	2.8	2.7			2.6	2.3	2.6	2.6			3.2	2.12	2.6	2.6	
Substrate																																		
d50 (mm)	0.1	1.2	1.3	NA			0.15	0.43	1.5	NA			0.16	1.33	1.4	NA		0.1	1.06	1.4	NA			0.12		6.3	NA			0.12	0.43	0.55	NA	
d84 (mm)	0.8	32.0	10.0	NA			0.50	1.41	7	NA			0.35	37	58	NA		0.5	6.6	5.1	NA		XIIIII	0.37	1.81	71	NA			4	3.03	1.7	NA	
Parameter	М	Y-00 (20	05)	МҮ	2-01 (200	6)	М	IY-02 (20)07)	N	1Y-03 (20	008)	M	Y-04 (20)09)	M	Y-05(2010)]																
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max Med																	
Channel Beltwidth (ft)	47.0	97.0	69.0	47.0	97.0	69.0	47.1	113.1	89.1	46.2	110.1	76.9																						
Radius of Curvature (ft)		132.0	76.0	32.0	132.0	76.0	46.0	185.8		47.5	204.2	80.8																						
Meander Wavelenght (ft)	131.0	369.0	212.0	131.0	369.0	212.0	148.1	542.0	283.1	128.5	567.2	220.8																						
Meander Width Ratio	3.50	9.90	5.70	3.50	9.90	5.70	1.33	3.19	2.51	1.27	3.03	2.40																						
Profile																																		
Riffle length (ft)	5.0	59.0	22.0	15.7	56.5	33.7	4.9	62.7	20.3	4.0	39.1	12.2																						
Riffle slope (ft/ft)		0.087	0.027	0.002		0.007	0.000		0.006			0.013																						
Pool length (ft)		131.0	70.0	18.5	74.3	46.1	17.7		57.4	13.2	626.6																							
Pool spacing (ft)	38.0	325.0	129.0	45.1	204.0	45.1	55.1	305.8	103.8	20.9	663.3	92.2																						
Additional Reach Parameters																																		
Valley Length (ft)		2645			2645			2651			2638							1																
Channel Length (ft)		2899			2899			2970			2969																							
Sinuosity		1.1			1.1			1.1		1	1.1																							
Water Surface Slope (ft/ft))				0.002			0.002		1	0.002							ĺ.																
BF slope (ft/ft)					0.002			0.002		I	0.002																							
Rosgen Classification		C/E5			C/E5			C5		I	C5																							
Habitat Index		NA			NA			NA			NA																							
Macrobenthos		NA			NA			NA			NA																							

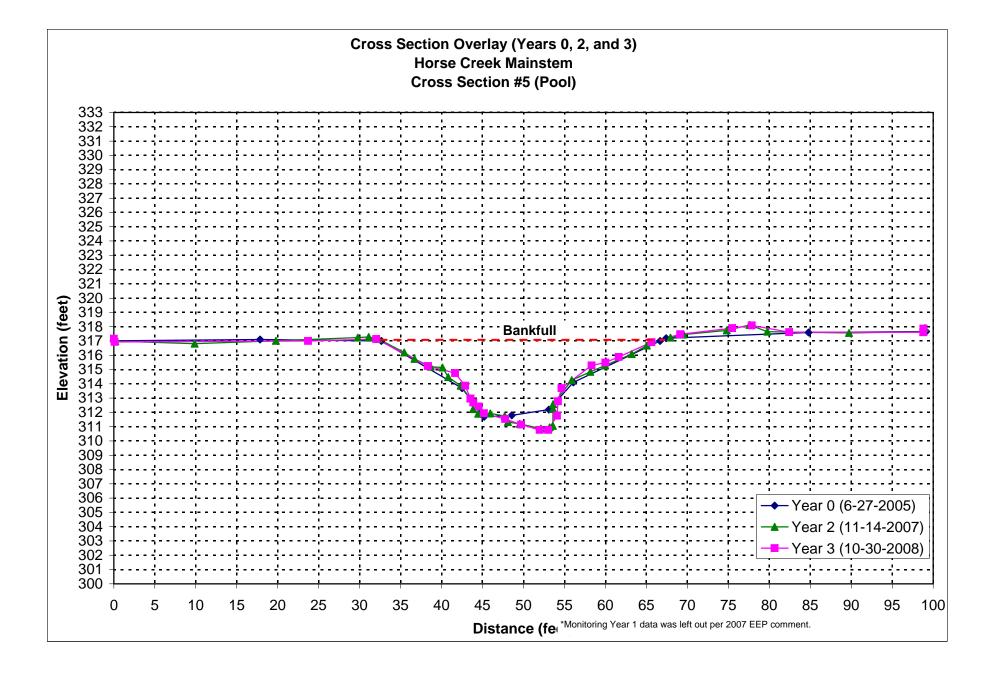
	Table L	A D. 1910)		·	draulic M	onitoring	g Summ	ary										
				Horse C														
		Seg	ment/Re	ach: Un	named Tr	ibutary	1											
Parameter			Cross See	ction 7 P	ool			Cr	oss Sect	ion 8 Rif	ffle							
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4	MY5						
BF Width (ft)	15	14.7	13.5	13.4			6.5	9.5	8.5	8.2								
Floodporne Width (ft)	200+	200+	NA	NA			200+	200+	45+	45+								
BFCross Sectional Area (ft)	21	14.8	21.4	20.5			5.3	8.7	8.5	8.0								
BF Mean Depth (ft)	1.4	1	1.6	1.5			0.8	0.9	1.0	1.0								
Width/Depth Ratio	11	14.7	NA	NA			8	10.4	8.5	8.5								
Entrenchment Ratio		13.6	NA	NA			20+	21	5.3+	5.5+								
Bank Height Ratio	1	1	NA	NA			1	1	1	1.13								
Wetted Perimeter (ft)	28	15.3 14.6 15. 0.96 1.5 1.4					10.4	10.4	9.6	9.2								
Hydraulic radius (ft)	0.7	0.96	1.5	1.4			1.3	0.8	0.9	0.9								
Substrate																		
d50 (mm)	0.19	0.96	1.4	NA			0.12	0.14	0.48	NA								
d84 (mm)	1	0.85	7.9	NA			0.18	0.93	1.5	NA								
Parameter	M			Ν	IY-01 (200)6)	МУ	7-02 (20	07)	МУ	2-03 (20	08)	МҮ	-04 (20	09)	M	Y-05(20)10)
		```	,											•	•			-
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	7.6	28.2	15.9	7.6	28.2	15.9	19.5	39.3	23.6	19.1	38.4	21.5						
Radius of Curvature (ft)	15.8	61.0	31.2	15.8 54.1	61.0	31.2	16.3	81.6	33.1	17.0	49.5 154.1	30.9						
Meander Wavelenght (ft)	54.1	107.2 12.0	81.4		107.2	81.4	63.8	162.4	79.0	62.9	4.7	86.7						
Meander Width Ratio Profile	5.8	12.0	8.6	5.8	12.0	8.6	2.3	4.6	2.8	2.3	4.7	2.6						
Riffle length (ft)	92.0	216.2	151.4	63.6	133.9	84.5	3.7	73.0	25.1	3.9	51.3	22.8						
Riffle slope (ft/ft)	0.024	0.043	0.031	0.027	0.044	0.033	0.006	0.108	0.039	0.014	0.147	0.034						
Pool length (ft)	21.3	39.3	30.9	11.2	36.3	22.7	6.9	23.8	14.1	3.8	30.3	10.7						
Pool spacing (ft)		273.4	212.2	147.4	161.6	187.3	13.7	88.4	38.9	11.1	86.7	30.9						
1 2																		
Additional Reach Parameters Valley Length (ft)	┢────	499			499			493			494							
Channel Length (ft)	┣────	540			540			551			554							
Sinuosity	┣────	1.1			1.1			1.1			1.1							
Water Surface Slope (ft/ft)	<b> </b>				0.019			0.020			0.022							
water Surface Stope (It/It)	<b> </b>				0.019			0.020			0.022							
BE slope (ft/ft)					0.017			0.017			0.017							
BF slope (ft/ft) Rosgen Classification		F5		E5				E5			F5b							
BF slope (ft/ft) Rosgen Classification *Habitat Index		E5 NA			E5 NA			E5 NA			E5b NA							

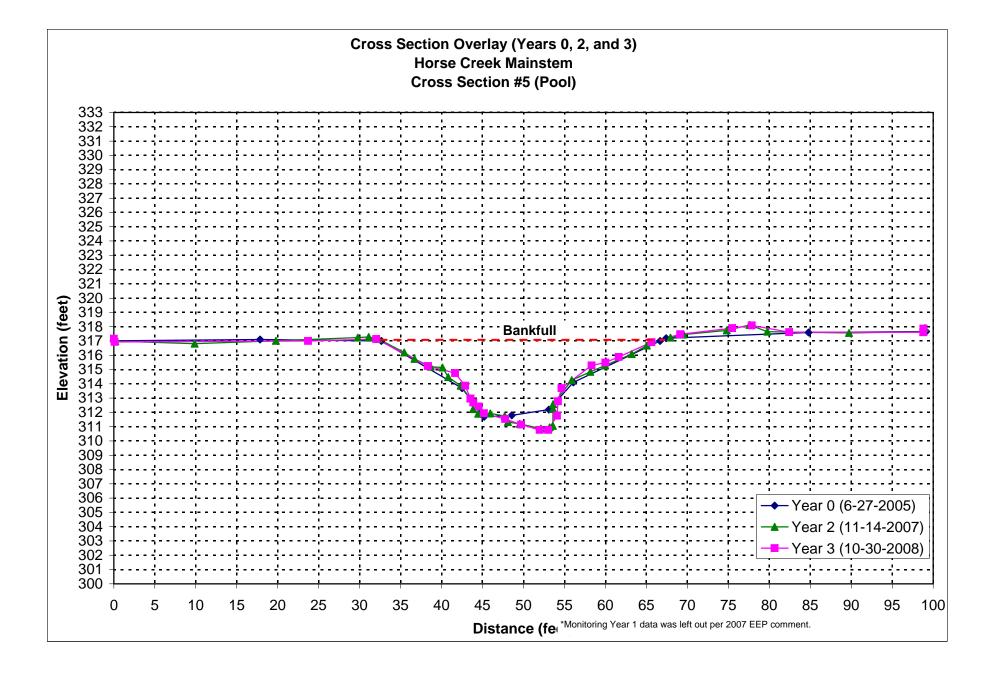

	,	Table B1. Stream Problem Areas	
		Horse Creek	
Feature Issue	Station numbers	Suspected Cause	Photo #
Beaver Dam	10+98	Beaver dam construction.	1
Beaver Dam	11+66	Beaver dam construction.	
	13+33	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation) on	
Bank Erosion (right)	13+42	outside of meander.	
Beaver Dam	22+56	Beaver dam construction.	
Beaver Dam	25+14	Beaver dam construction.	
Bank Erosion (left)	26+25 26+39	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation) on	
Undercut Bank (left)	26+39	outside of meander. Soil stability issues and lack of bank protection (i.e. deep rooted vegetation) on	
	26+57 26+29	outside of meander.	
Bank Erosion (right)	26+62	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation).	
Bank Erosion (right)	27+22 27+44	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation) on outside of meander.	
Bank Erosion (left)	28+64 28+71	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation) on outside of meander.	
Bank Erosion (right, severe)	29+65	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation) on	2
	29+97 31+44	outside of meander. Soil stability issues and lack of bank protection (i.e. deep rooted vegetation) on	
Bank Erosion (left, severe)	31+66 32+51	outside of meander. Soil stability issues and lack of bank protection (i.e. deep rooted vegetation) on	
Bank Erosion (right, severe)	32+75	outside of meander.	
Aggradation/Bar Formation	32+83 33+06	Adjacent bank erosion resulted in sediment deposition/bar formation in stream channel.	
Bank Erosion left)	32+88	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation) on	
Ponk Fracion (right)	33+10 33+06	outside of meander. Soil stability issues and lack of bank protection (i.e. deep rooted vegetation) on	
Bank Erosion (right)	33+40 33+78	outside of meander. Soil stability issues and lack of bank protection (i.e. deep rooted vegetation) on	
Bank Erosion (left, severe)	34+09	outside of meander.	
Crossvane (Severe)	34+07	Significant piping and backarm scour of left arm.	
Bank Erosion (left, severe)	34+28 34+88	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation).	3
Bank Erosion (right)	34+38	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation).	
_	34+47 34+59		
Bank Erosion (right)	34+71 34+88	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation).	
Bank Erosion (right)	34+88 34+93	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation).	
Crossvane	34+91	Piping and back arm scour of right arm.	4
Bank Erosion (right)	35+14	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation).	
Bank Erosion (right)	35+43 34+54	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation).	
_	35+70 35+86		
Bank Erosion (right, severe)	36+34	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation).	
Jhook	36+28	Piping around/under structure.	
Bank Erosion (left, severe)	36+64 37+17	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation).	
Jhook	37+07	Piping around/under structure.	5
	37+53		-
Bank Erosion (right severe)	37+83 37+79	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation).	
Bank Erosion (left)	38+33	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation).	
Bank Erosion (right, severe)	37+86 38+19	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation).	
Bank Erosion (right, severe)	38+73 38+87	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation).	
Bank Erosion (left, severe)	38+88	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation).	
	39+16 39+24		
Bank Erosion (left, severe)	39+58	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation).	
Bank Erosion (right)	39+29	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation).	
Headows	39+43	Grada adjustment ofter construction	
Headcut	10+59 UT	Grade adjustment after constuction.	
Crossvane	12+27 UT	Piping around right arm; large rock from right arm in channel; pool is filled in.	
Crossvane	12+75 UT	Piping around/under structure.	
Bank Erosion (right)	12+83 UT 12+87 UT	Soil stability issues and lack of bank protection (i.e. deep rooted vegetation) on outside of meander.	
Crossvane	12+07 UT	Piping around/under structure.	
	14+18 UT	Adjacent bank erosion resulted in sediment deposition/bar formation in stream	

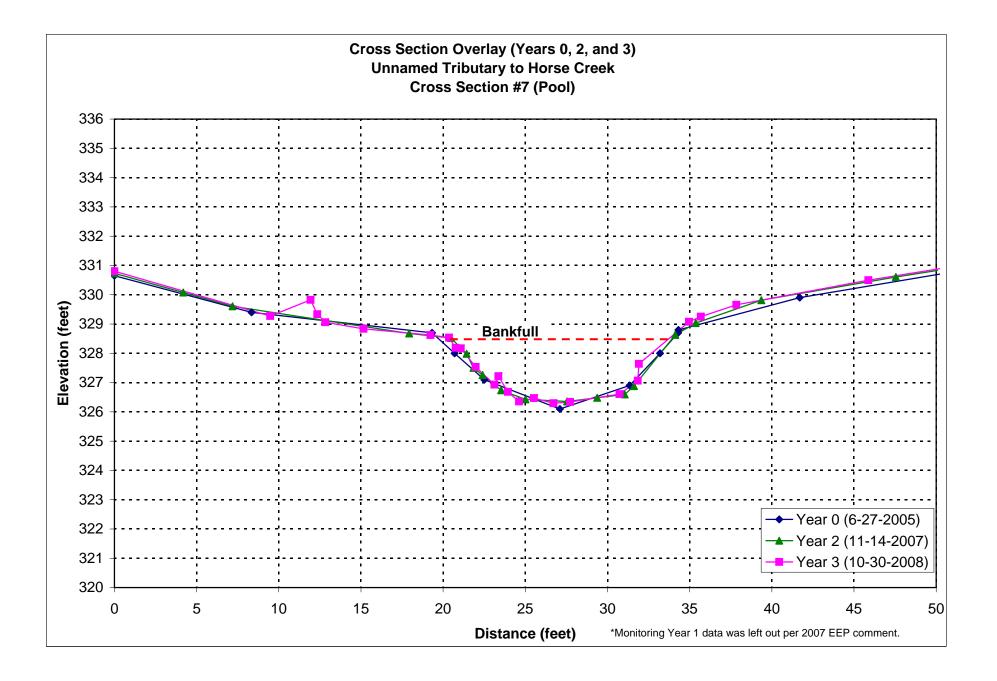

	Table B2. Visual Morphologica Horse Cre					
	Segment/Reach:	Mainstem				
Feature Category	Metric (per As-built and reference baselines)	(#Stable) Number Performing as Intended	Total Number per As-built	Total Number / feet in unstable state	% Performing in Stable Condition	Feature Performance Mean or Total
A. Riffles	1. Present	19	31	NA	61%	
	2. Armor stable	19	31	NA	61%	
	3. Facet grade appears stable	16	31	NA	52%	
	4. Minimal evidence of embedding/fining	18	31	NA	58%	
	5. Length appropriate	16	31	NA	52%	57%
B. Pools	1. Present	26	30	NA	87%	
	2. Sufficiently deep	26	30	NA	87%	
	3. Length appropriate	26	30	NA	87%	87%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering	9	9	NA	100%	
	2. Downstream of meander (glide/inflection) centering	9	9	NA	100%	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion	10	18	NA	56%	
	2. Of those eroding, # w/concomitant point bar formation	5	8	NA	63%	
	3. Apparent Rc within specifications	16	18	NA	89%	
	4. Sufficient floodplain access and relief	18	18	NA	100%	77%
E. Bed General	1. General channel bed aggradation areas (bar formation)	NA	NA	1/23	99%	
	2. Channel bed degradation - areas of increasing down cutting or head cutting	NA	NA	0/0	100%	100%
F. Bank Condition	1. Actively eroding, wasting, or slumping bank	NA	NA	27/707	88%	88%
G. Vanes / J Hooks etc.	1. Free of back or arm scour	21	24	NA	88%	
	2. Height appropriate	24	24	NA	100%	
	3. Angle and geometry appear appropriate	24	24	NA	100%	
	4. Free of piping or other structural failures	20	24	NA	83%	93%
H. Wads and Boulders	1. Free of scour	NA	NA	NA	NA	
	2. Footing stable	NA	NA	NA	NA	NA

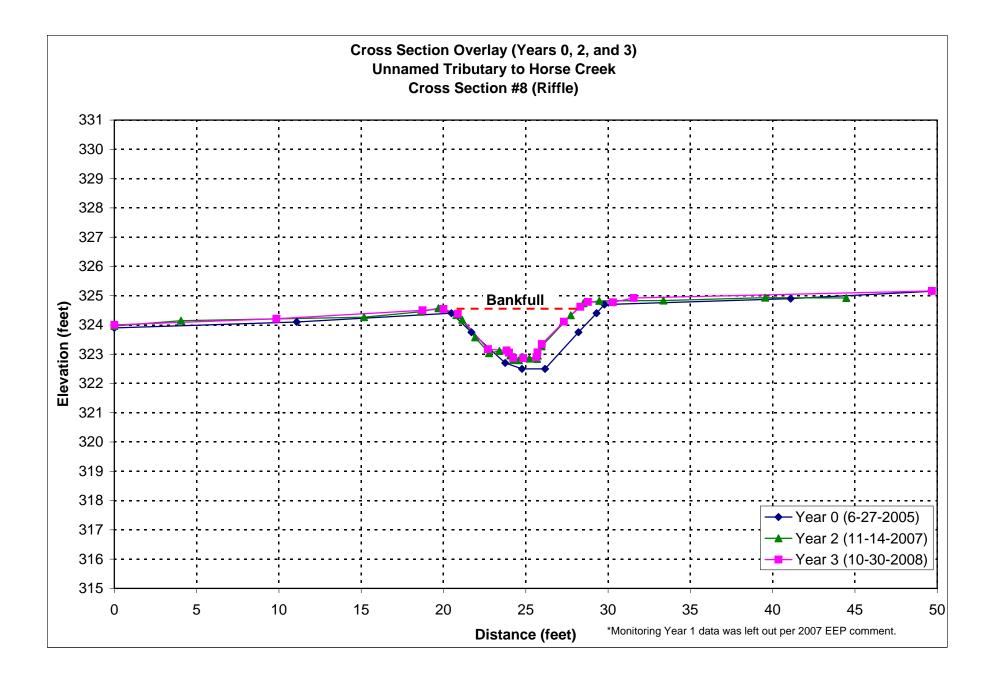

	Table B2. Visual Morphologica Horse Cree					
	Segment/Reach: Unna	med Tributary	1			
Feature Category	Metric (per As-built and reference baselines)	(#Stable) Number Performing as Intended	Total Number per As-built	Total Number / feet in unstable state	% Performing in Stable Condition	Feature Performance Mean or Total
A. Riffles	1. Present	12	12	NA	100%	
	2. Armor stable	12	12	NA	100%	
	3. Facet grade appears stable	12	12	NA	100%	
	4. Minimal evidence of embedding/fining	10	12	NA	83%	
	5. Length appropriate	11	12	NA	92%	95%
B. Pools	1. Present	12	12	NA	100%	
	2. Sufficiently deep	12	12	NA	100%	
	3. Length appropriate	12	12	NA	100%	100%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering	5	5	NA	100%	
	2. Downstream of meander (glide/inflection) centering	5	5	NA	100%	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion	9	9	NA	100%	
	2. Of those eroding, # w/concomitant point bar formation	0	0	NA	100%	
	3. Apparent Rc within specifications	8	9	NA	89%	
	4. Sufficient floodplain access and relief	9	9	NA	100%	97%
E. Bed General	1. General channel bed aggradation areas (bar formation)	NA	NA	1/96	83%	
	2. Channel bed degradation - areas of increasing down cutting or head cutting	NA	NA	1/24	96%	89%
F. Bank Condition	1. Actively eroding, wasting, or slumping bank	NA	NA	1/4	100%	100%
G. Vanes / J Hooks etc.	1. Free of back or arm scour	3	3	NA	100%	
	2. Height appropriate	2	3	NA	67%	
	3. Angle and geometry appear appropriate	2	3	NA	67%	
	4. Free of piping or other structural failures	0	3	NA	0%	58%
H. Wads and Boulders	1. Free of scour	NA	NA	NA	NA	
	2. Footing stable	NA	NA	NA	NA	NA


### APPENDIX B4


## STREAM CROSS-SECTIONS



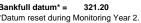



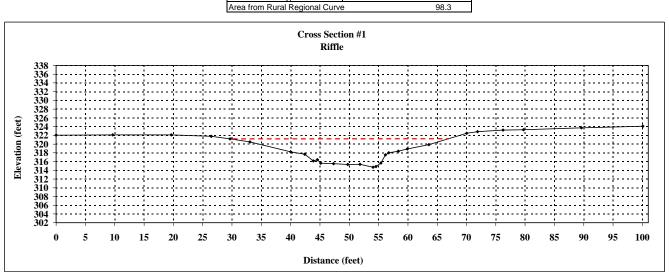


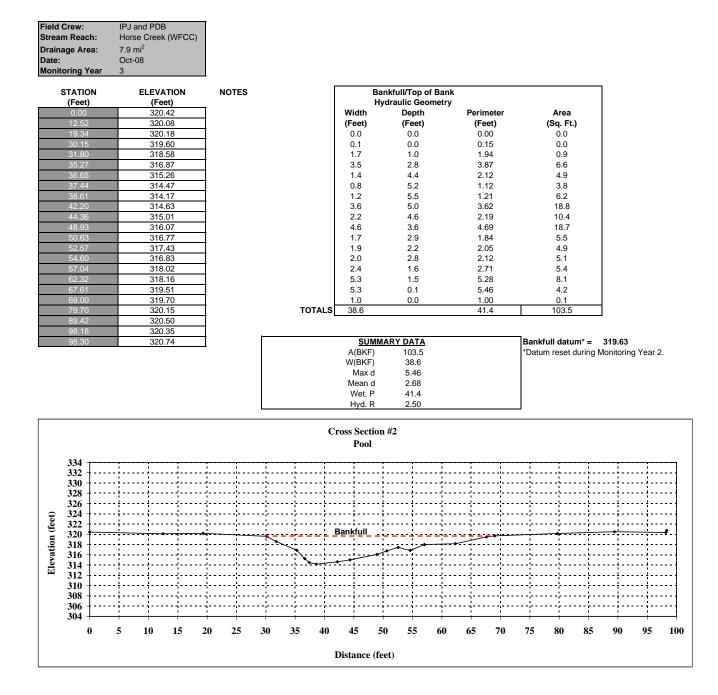








Field Crew:	IPJ and PDB
Stream Reach:	Horse Creek (WFCC)
Drainage Area:	7.9 mi ²
Date:	Oct-08
Monitoring Year	3
STATION	ELEVATION


STATION	ELEVATION	NOTES
(Feet)	(Feet)	_
0.00	322.03	
9.65	322.11	
19.64	322.11	
26.48	321.78	
29.67	321.20	
33.05	320.51	
40.00	318.24	
42.40	317.67	
43.89	316.13	
44.56	316.43	
45.14	315.64	
47.31	315.51	
49.74	315.32	
51.83	315.36	
54.07	314.71	
54.54	314.84	
55.40	315.68	
56.17	317.55	
56.73	318.00	
58.36	318.35	
59.90	318.88	
63.58	319.86	
70.02	322.48	
71.88	322.83	
76.21	323.22	
79.72	323.29	
89.58	323.72	
100.06	324.09	]

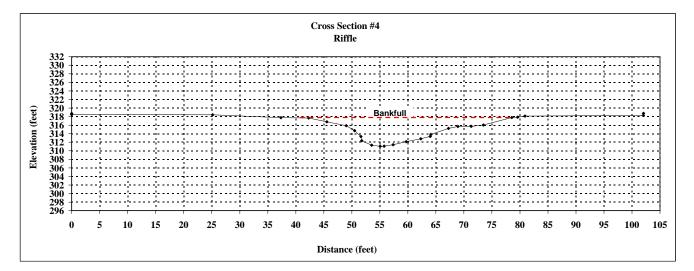
			full/Top of Bank raulic Geometry	
	Width	Depth	Perimeter	Area
	(Feet)	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0.00	0.0
	3.4	0.7	3.45	1.2
	7.0	3.0	7.31	12.7
	2.4	3.5	2.47	7.8
	1.5	5.1	2.14	6.4
	0.7	4.8	0.74	3.3
	0.6	5.6	0.98	3.0
	2.2	5.7	2.17	12.2
	2.4	5.9	2.44	14.1
	2.1	5.8	2.09	12.3
	2.2	6.5	2.33	13.8
	0.5	6.4	0.49	3.0
	0.9	5.5	1.20	5.1
	0.8	3.7	2.02	3.5
	0.6	3.2	0.72	1.9
	1.6	2.8	1.67	4.9
	1.5	2.3	1.63	4.0
	3.7	1.3	3.81	6.7
	3.1	0.0	3.38	2.1
ALS	37.0		41.0	118.1

SUMMARY D	ATA (BANKFULL)		Ban
A(BKF) 118.1	W(FPA)	100+	*Dat
W(BKF) 37.0	WP	41.0	
Max d 6.49	Hydraulic Radius	2.88	
Mean d 3.19	Wetted Perimeter= WP		
W/D 11.6	Area= A		
Bank Height 7.07	Width= W		
Entrenchment 2.7+	Depth= D		
Stream Type C/E	Bankfull= BKF		
ea from Rural Regional Curv	e	98.3	








Field Crew: Stream Reach Drainage Area Date: Monitoring Ye	n: l a: : (	IPJ and Horse C 7.9 mi ² Oct-08 3		VFCC)																		
STATIOI (Feet)	N	EL	EVATI (Feet)		N	DTES						ull/Top o ulic Geo		1								
0.00			319.72		T					Width	,	Depth	,,	Perin	neter		A	rea				
0.00			319.56		1					(Feet)		(Feet)		(Fe				q. Ft.)				
13.80			319.49		1					0.0		0.0		0.0				0.0				
24.59			319.14		1					9.5		2.3		9.7				0.8				
33.08			318.70		1					1.3		3.0		1.5				3.6				
42.55			316.41		1					1.5		4.3		1.9				5.5				
43.89	_		315.67		4					1.0		7.3		3.1				5.8				
45.40			314.38		4					0.6		7.8		0.7				4.7				
46.40			311.39		4					1.4		7.9		1.4				1.2				
47.02			310.92		4					1.3		7.8		1.3				0.4				
48.45			310.82		┥					1.4		5.4		2.7				9.4				
49.78 51.20			310.90 313.30		+					1.1		6.9		1.8				6.7 2 7				
51.20			313.30		┥					1.9 2.5		6.5 5.0		1.9 2.8				2.7 4.1				
52.29 54.19			311.76		+					2.5 0.5		5.0 4.3		2.8				4.1 2.1				
56.64			313.68		1					0.3		2.3		2.0				1.3				
57.09			314.43		1					1.7		2.0		1.7				3.6				
57.50			316.40		4					0.8		1.5		0.9				1.3				
59.18			316.74		1					3.1		1.1		3.1				4.0				
59.96			317.20		1					3.0		0.5		3.0				2.4				
63.04			317.62		1					1.7		0.0		1.8				0.4				
66.07			318.21		1					0.0		0.0		0.0	)2			0.0				
67.81			318.69		1			TOTA	LS	34.8				43	.0		1	10.1				
69.83			318.87		1				_													
77.43			318.95		]																	
97.47			319.83		1							<u>Y DATA</u>						datum*				
100.77			319.93		1					A(BKF)		110.1				*Da	itum re	eset dur	ing Mo	nitoring `	Year 2.	•
100.78			320.15		1					W(BKF)		34.8										
										Max o Mean o		7.88										
										Wet. P		3.17 43.0										
										Hyd. R		43.0 2.56										
							L			Tiyu. I		2.00										
									Cr	oss Sect	ion #3	;										-
										Pool												
332 - 330 -			;	· • • • • • •	• • • • • •				<u>.</u>				• • •;• • •				;				·; · · · ·	-
330 - 328 -																						-
$\frac{326}{326}$ -			;														;					-
324 -			;	. <b>.</b>		- ;			÷		;		;		;		;			-;	.;	-
				·	• • • • • •						¦		• •			;	;				· <del>;</del> · · · ·	-
(1) 322 - 320 - 320 - 320 - 320 - 316 - 316 - 316 - 312 - 312 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 310 - 31		<u></u>	<u> </u>	<u> </u>	<u></u>	•				Ba	nkfull					<u></u>			<u></u>	<u></u>	· <u>+</u> · · · •	-
= 318 = 316												•	-sa-									-
5 316 - 5 314 -									;	~		J										
312 -			÷						÷	<u> </u>	$\wedge$	~										-
			:	4	• • • • • •				4	····	-		• • • • • • •								• • • • • •	-
308 -	!		:		• • • • • •	- :					:		• • -;• • •	;	;	;	;				• • • • • •	-
306 -	!		!		• • • • • •								• • • • • • •				;					-
304 - 302 -																						•
302			+		+			-	1		-				-						+	_
0	) 5		0	15	20	25	30	35 4	40	45	50	55	60	65	70	75	8	08	E .	90 9	95	1

Field Crew:	IPJ and PDB
Stream Reach:	Horse Creek (WFCC)
Drainage Area:	7.9 mi ²
Date:	Oct-08
Monitoring Year	3

STATION (Feet)	ELEVATION* (Feet)	NOTES
0.00	318.71	T
0.00	318.45	1
25.15	318.42	Ι
37.35	317.75	]
42.28	317.65	]
45.56	316.78	]
49.01	315.88	]
50.50	314.70	]
51.62	313.34	
51.77	312.36	
53.55	311.32	
55.07	311.03	
55.76	311.07	]
57.38	311.40	
59.71	312.14	
62.31	312.82	
63.98	313.36	
64.12	313.81	1
67.24	315.24	
68.93	315.69	
71.30	315.72	
73.47	316.01	
78.55	317.78	1
79.59	317.85	1
80.90	318.11	1
102.03	318.27	1
102.06	318.75	1

		ankfull/Top of Bank ydraulic Geometry		
	Width	Depth	Perimeter	Area
	(Feet)	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0.00	0.0
	2.3	0.0	2.28	0.0
	3.3	0.9	3.39	1.6
	3.5	1.8	3.57	4.7
	1.5	3.0	1.90	3.6
	1.1	4.3	1.76	4.1
	0.2	5.3	0.99	0.7
	1.8	6.4	2.06	10.4
	1.5	6.7	1.55	9.9
	0.7	6.6	0.69	4.6
	1.6	6.3	1.65	10.5
	2.3	5.6	2.44	13.8
	2.6	4.9	2.69	13.5
	1.7	4.3	1.76	7.7
	0.1	3.9	0.47	0.6
	3.1	2.5	3.43	9.9
	1.7	2.0	1.75	3.8
	2.4	2.0	2.37	4.7
	2.2	1.7	2.19	4.0
	4.9	0.0	5.21	4.1
OTALS	38.4		42.2	112.1

S	UMMARY	DATA (BANKFULL)		Bankfull datum* = 317.69
A(BKF)	112.1	W(FPA)	100+	*Datum reset during Monitoring Year 2.
W(BKF)	38.4	WP	42.2	
Max d	6.66	Hydraulic Radius	2.66	
Mean d	2.92	Wetted Perimeter= WP		T
W/D	13.2	Area= A		
Bank Height	6.74	Width= W		
Entrenchment	2.6+	Depth= D		
Stream Type	С	Bankfull= BKF		
Area from Rural Regi	onal Curv	e	98.3	]



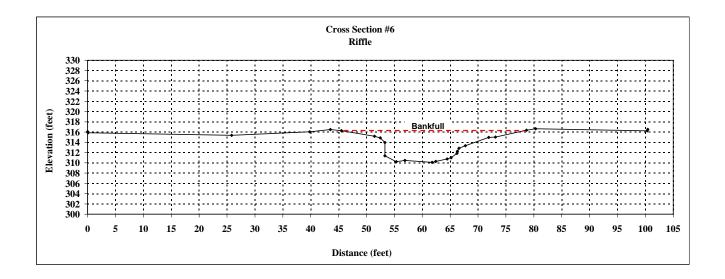
Field Crew: Stream Reach:

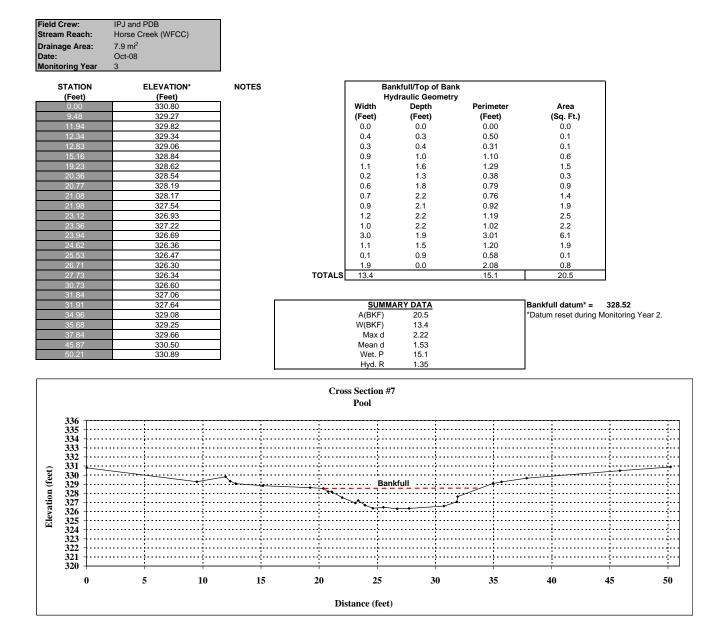
Drainage Area:

IPJ and PDB Horse Creek (WFCC) 7.9 mi²

STATION	ELEVATION*	NOTES		В	ankfull/Top of Ba	ank			
(Feet)	(Feet)				lydraulic Geome				
0.00	317.16	1		Width	Depth	Perimeter	Area		
0.09	316.94			(Feet)	(Feet)	(Feet)	(Sq. Ft.)		
23.70	317.01			0.0	0.0	0.00	0.0		
32.03	317.14	1		6.3	1.9	6.58	6.0		
38.33	315.24			3.3	2.4	3.37	7.2		
41.66	314.75			1.2	3.3	1.51	3.5		
42.89	313.87			0.6	4.2	1.10	2.3		
43.52	312.97			0.3	4.5	0.45	1.5		
43.87	312.69			0.7	4.7	0.73	3.1		
44.54	312.41			0.6	5.2	0.79	3.1		
45.17	311.94	1		2.6	5.6	2.63	14.1		
47.77	311.53			2.0	6.0	1.99	11.3		
49.72	311.15	-		2.3	6.4	2.30	14.0		
51.99	310.78			1.0	6.4	1.02	6.5		
53.01	310.78	-		1.0	5.4	1.48	6.4		
54.10	311.78	1		0.1	4.4	1.01	0.5		
54.10	312.78	1		0.1	3.4	1.01	1.6		
54.63	313.70			3.7	1.9	4.00	9.7		
58.30	315.29			1.7	1.9	1.69	2.9		
59.98	315.29	-		1.7	1.6	1.69	2.9		
59.98 61.63	315.88	-		4.0	0.2	4.12	3.0		
65.62		-		4.0	0.2	4.12	0.2		
	316.91	-	то		0.0			_	
69.13	317.48	-	10	TALS 35.1		39.0	99.4		
75.47	317.91	-							
77.85 82.43	318.09	-	-	0.111			Bankfull datum* =	04744	
02.43 98.79	317.62	-			MARY DATA			317.14	- 2
98.81	317.61	-		A(BKF) W(BKF)	99.4		*Datum reset during N	nonitoring rea	ITZ.
96.61	317.87	J		Max d	35.1 6.37				
				Mean d	2.83				
				Wet. P	39.0				
				Hyd. R	2.55				
				Cross Secti Pool	ion #5				
$334_{332}$									;
334 332 330									
332 - 330 - 328 -						· · · · · · · · · · · · · · · · · · ·			
332 - 330 - 328 - 326 -									
$\begin{array}{r} 332 \\ 330 \\ - \\ 328 \\ - \\ 326 \\ - \\ 324 \\ - \end{array}$						· · · · · · · · · · · · · · · · · · ·			
$\begin{array}{r} 332 \\ 330 \\ - \\ 328 \\ - \\ 326 \\ - \\ 324 \\ - \end{array}$					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
$\begin{array}{r} 332 \\ 330 \\ - \\ 328 \\ - \\ 326 \\ - \\ 324 \\ - \end{array}$					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
$\begin{array}{r} 332 \\ 330 \\ - \\ 328 \\ - \\ 326 \\ - \\ 324 \\ - \end{array}$					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
$\begin{array}{r} 332 \\ 330 \\ - \\ 328 \\ - \\ 326 \\ - \\ 324 \\ - \end{array}$					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
$\begin{array}{r} 332 \\ 330 \\ - \\ 328 \\ - \\ 326 \\ - \\ 324 \\ - \end{array}$					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
332 330 328 326 324 322 320 318 316 314 314 310					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
332 330 328 326 324 322 320 318 316 314 312 310 308					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
332 330 328 326 324 322 320 316 314 312 310 308 					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
332 330 328 326 324 322 320 320 320 318 316 314 314 312 310 308 304 304					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
332 330 328 326 324 322 320 318 316 314 312 310 308 					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			

Distance (feet)


Field Crew:	IPJ and PDB
Stream Reach:	Horse Creek (WFCC)
Drainage Area:	7.9 mi ²
Date:	Oct-08
Monitoring Year	3

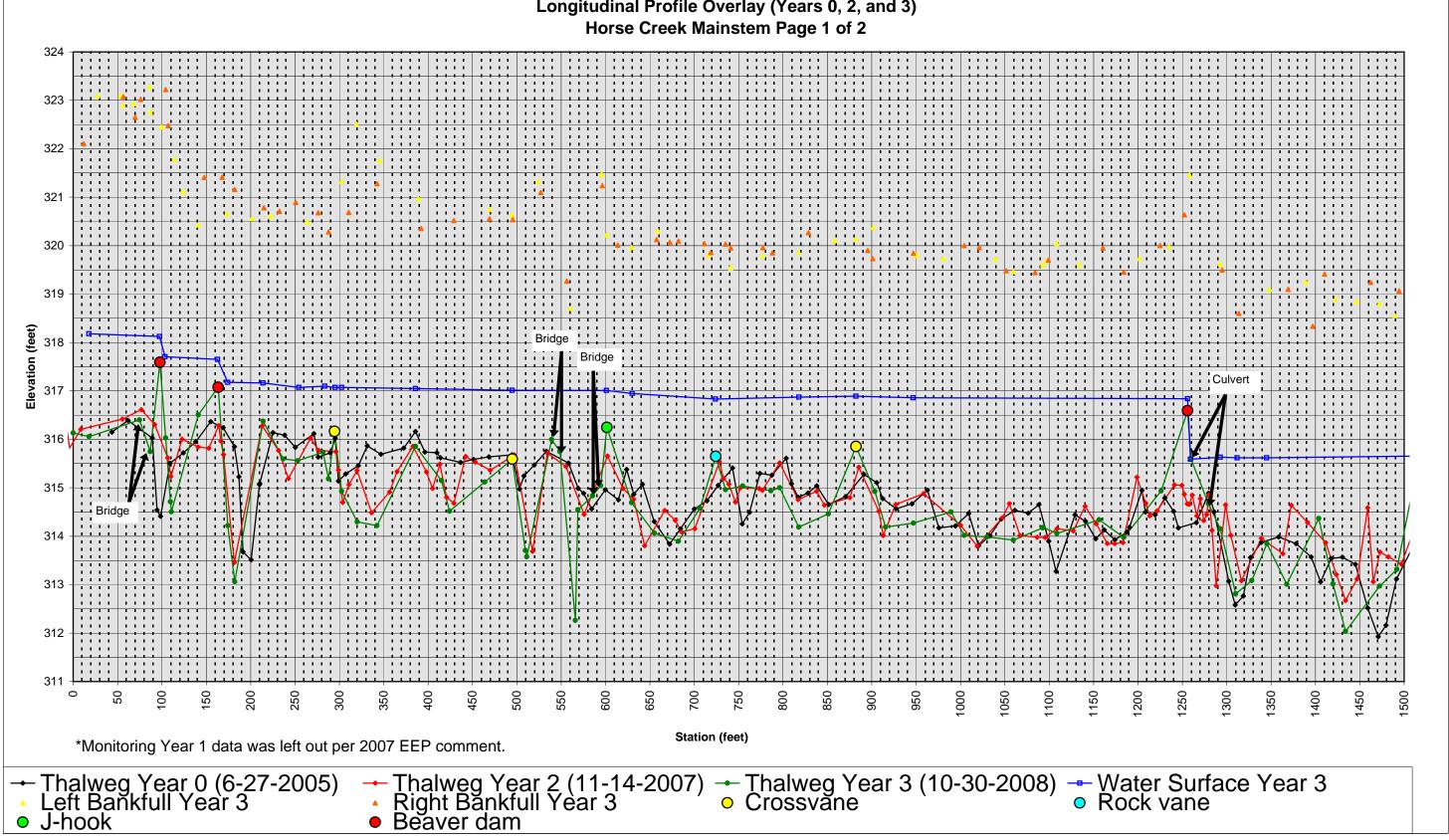

STATION (Feet)	ELEVATION* (Feet)	NOTES
0.00	316.10	
0.08	315.88	
25.82	315.37	
39.83	316.05	
43.51	316.50	
45.51	316.29	
51.45	315.20	
52.47	314.89	
53.29	313.96	
53.30	311.38	
55.35	310.23	
56.88	310.48	
61.77	310.09	
62.43	310.28	
64.46	310.77	
65.18	311.00	
66.22	311.86	
66.30	312.26	
66.60	312.86	
67.73	313.36	
71.92	314.97	
73.13	315.04	
78.68	316.38	1
80.34	316.64	
100.33	316.26	
100.43	316.54	

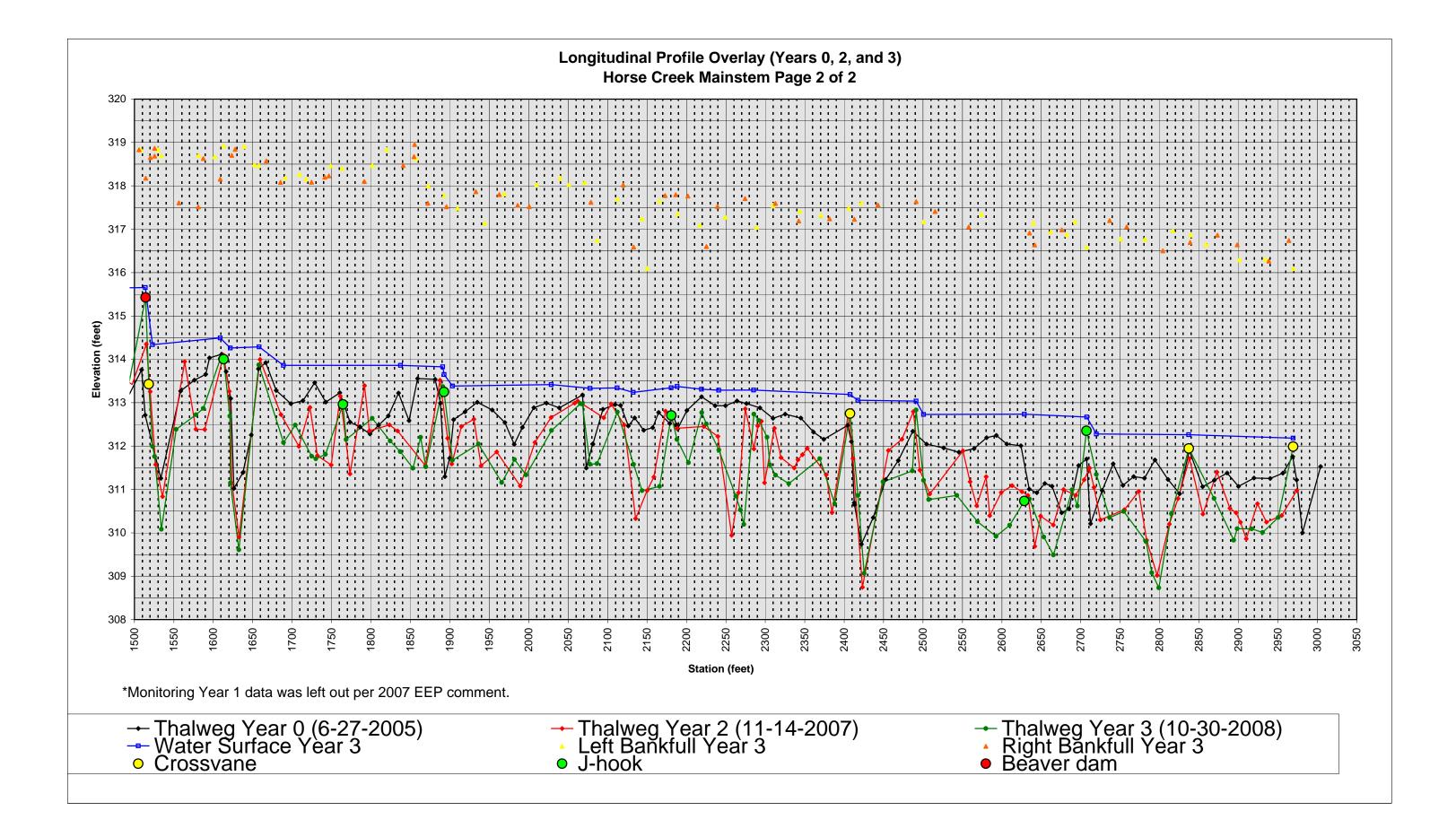
		ankfull/Top of Bank ydraulic Geometry		
	Width	Depth	Perimeter	Area
	(Feet)	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0.00	0.0
	0.6	0.0	0.56	0.0
	5.9	1.1	6.04	3.5
	1.0	1.4	1.07	1.3
	0.8	2.4	1.24	1.6
	0.0	4.9	2.58	0.0
	2.1	6.1	2.35	11.3
	1.5	5.9	1.55	9.1
	4.9	6.2	4.91	29.6
	0.7	6.1	0.69	4.1
	2.0	5.6	2.09	11.8
	0.7	5.3	0.75	3.9
	1.0	4.5	1.35	5.1
	0.1	4.1	0.40	0.3
	0.3	3.5	0.67	1.1
	1.1	3.0	1.24	3.6
	4.2	1.4	4.49	9.1
	1.2	1.3	1.21	1.6
	5.3	0.0	5.43	3.4
DTALS	33.5		38.6	100.5

<u>' DATA (BANKFULL)</u>		E
W(FPA)	100+	*
WP	38.6	
Hydraulic Radius	2.60	
Wetted Perimeter= WP		
Area= A		
Width= W		
Depth= D		
Bankfull= BKF		
/e	98.3	
	W(FPA) WP Hydraulic Radius Wetted Perimeter= WP Area= A Width= W Depth= D Bankfull= BKF	W(FPA)     100+       WP     38.6       Hydraulic Radius     2.60       Wetted Perimeter= WP       Area= A       Width= W       Depth= D       Bankfull= BKF

Bankfull datum* = 316.33 *Datum reset during Monitoring Year 2.

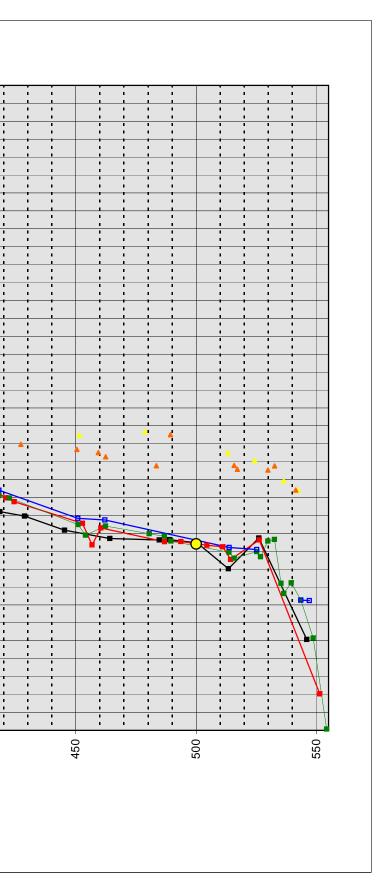






Field Crew: Stream Reach: Drainage Area:	IPJ and PDB Horse Creek (WFCC) 7.9 mi ²								
Date: Monitoring Year	Oct-08 3								
STATION (Feet)	ELEVATION* (Feet)	NOTES			Bankfull/Top of Bank Hydraulic Geometry				
0.00	324.00	]		Width	Depth	Perimeter	Area		
9.85	324.21			(Feet)	(Feet)	(Feet)	(Sq. Ft.)		
18.72	324.50			0.0	0.0	0.00	0.0		
20.00	324.55			0.9	0.2	0.89	0.1		
20.87	324.38	-		1.8	1.4	2.19	1.5		
22.70	323.17			1.1	1.4	1.14	1.6		
23.84 23.98	323.13 323.05			0.1 0.3	1.5 1.7	0.16 0.32	0.2 0.4		
23.98	323.05	-		0.3	1.7	0.32	1.0		
24.85	322.87			0.8	1.7	0.81	1.0		
25.66	322.90			0.0	1.5	0.01	0.1		
25.71	323.07			0.3	1.2	0.39	0.4		
25.98	323.35	1		1.3	0.5	1.54	1.1		
27.32	324.11	1		0.9	0.0	1.01	0.2		
28.32	324.62		TOTALS	8.2		9.2	8.0		
28.78	324.79								
30.29	324.78								
31.56	324.92	-			(DATA (BANKFULL)		Bankfull datum*		
49.68	325.16	J	A(BKF) W(BKF)	8.0 8.2	W(FPA) WP	45+ 9.2	*Datum reset durir	ng Monitoring Yea	ar 2.
			Max d Mean d W/D Bank Height Entrenchment Stream Type Area from Rural Reg	1.70 0.97 8.47 1.92 5.5+ E	Hydraulic Radius Wetted Perimeter= V Area= / Width= V Depth= I Bankfull= E	A N D	_		
331			Cros	ss Section Riffle	n #8				
330				÷•••••		••••••			
329				÷	••••••	••••••	••••••	••••••	
328 327									
224									
8 325					Bankfull				
😇 324 🗕	•			$\sim$		·····	••••••	••••••	
326           325           324           323           324           323           321           320				÷	*	•••••			
322									
320									
□ <u>319</u> - · · · ·				÷					
318				·					
317				÷					
316									
		0	17	, 20	25	20	25	40	
0	5 1	U	15	20	25	30	35	40	45
			Dis	stance (fe	eet)				

### APPENDIX B5

# STREAM LONGITUDINAL PROFILE


Longitudinal Profile Overlay (Years 0, 2, and 3)

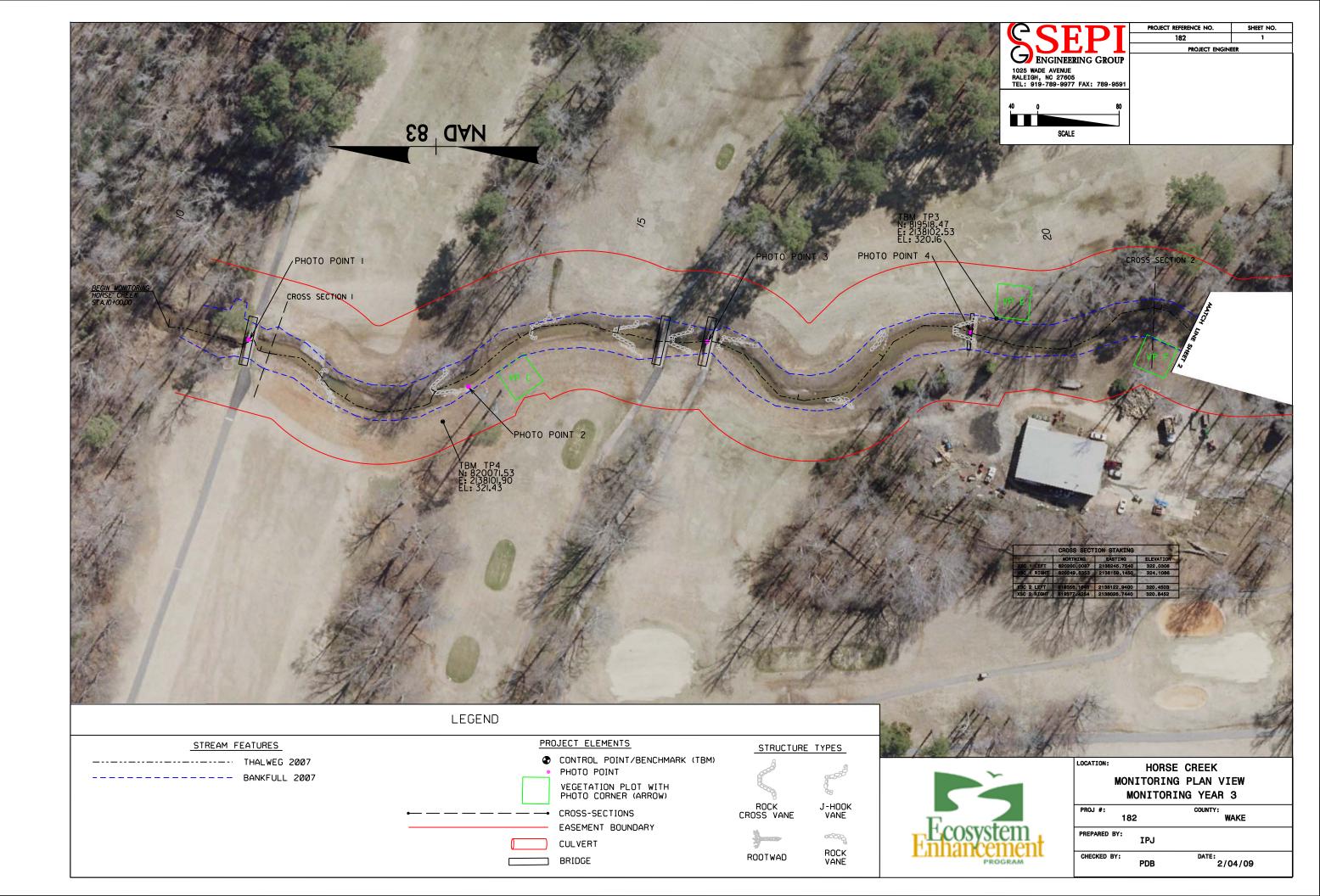


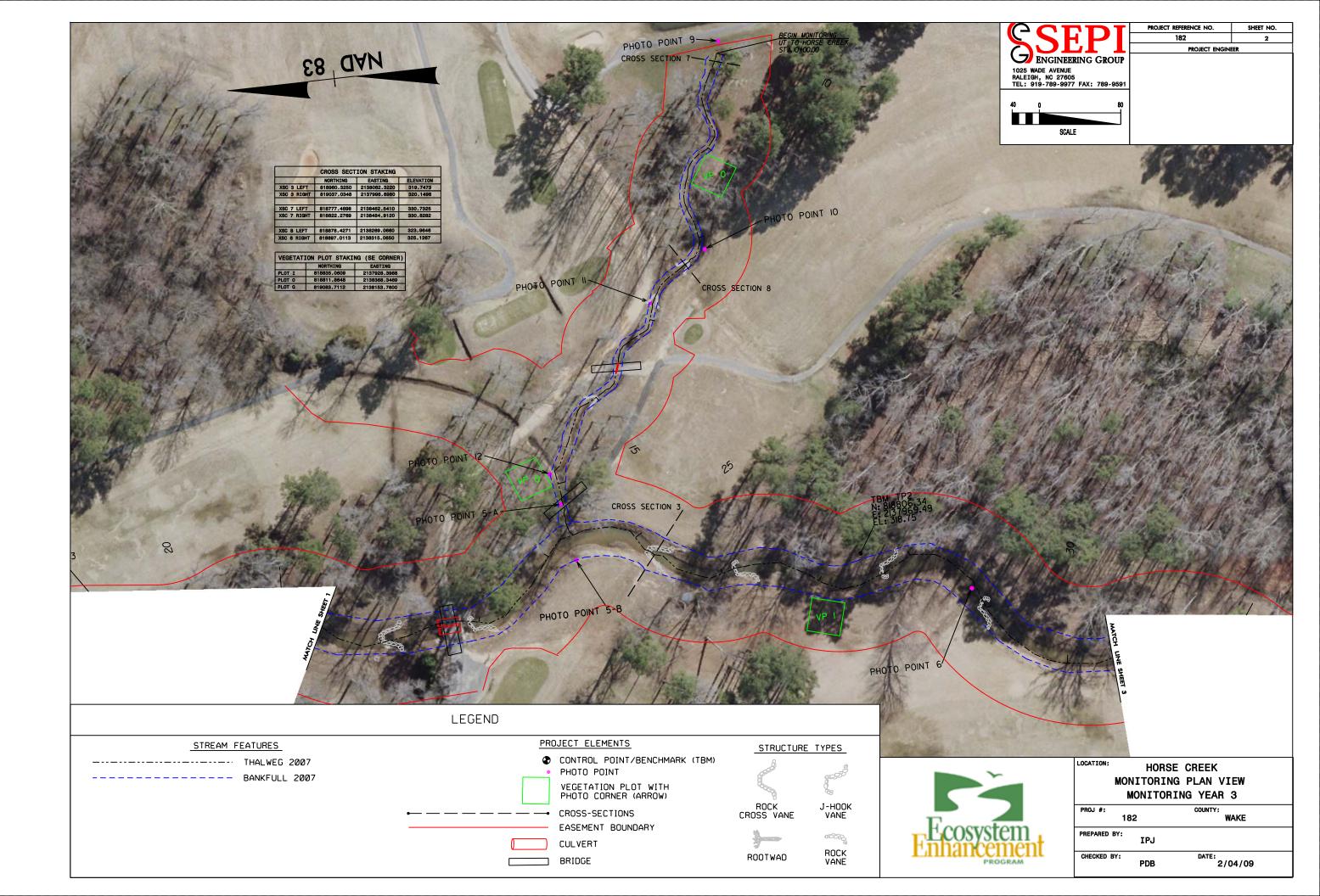


Longitudinal Profile Overlay (Years 1 - 3) UT to Horse Creek 330 1 329 . . . . . ÷. х. 328 -÷ ÷ 1 ÷ 1 1 327 . . • 1 . . . 1 1 1 . . • 326 1 -÷ . 325 Headcut н. 324 · O . . . . 323 322 **Elevation (feet)** 321 320 ÷ ÷ . . . 319 ÷ : ÷ -1 318 Culvert . 1 317 : . . . . ÷. 316 315 . н. . • 314 1 ÷ -÷ ۰. 313 () 1 1 1 1 1 1 1 -. 1 1 . 1 . 1 1 1 1 1 1 1 1 312 200 400 0 50 150 250 300 350 100

Station (feet)
--- Thalweg Year 1 (8-01-2006) --- Thalweg Year 2 (11-14-2007) --- Thalweg Year 3 (10-30-2008)
--- Water Surface Year 3 
--- Water Surface Year 3
--- Crossvane



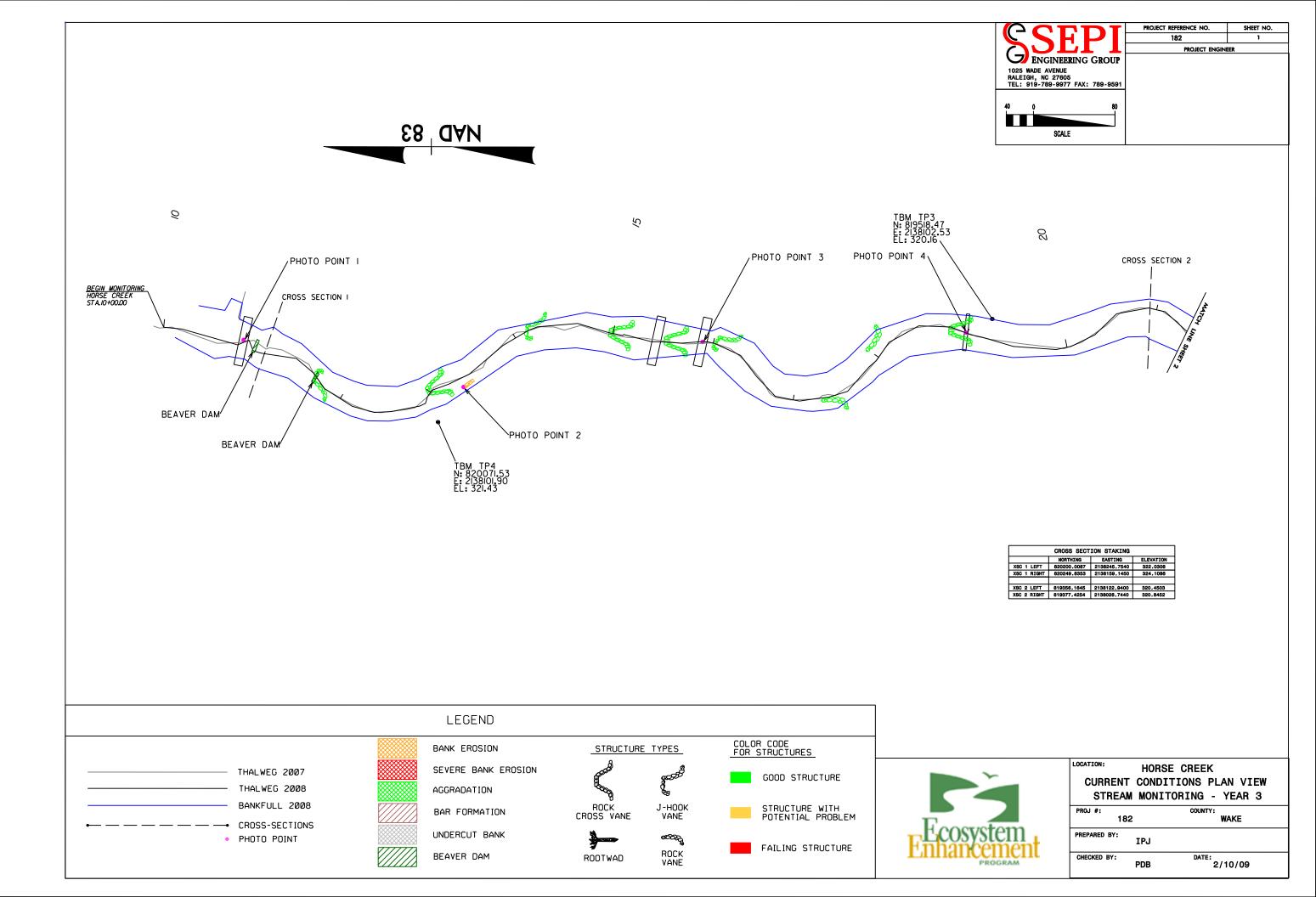

## **APPENDIX B6**

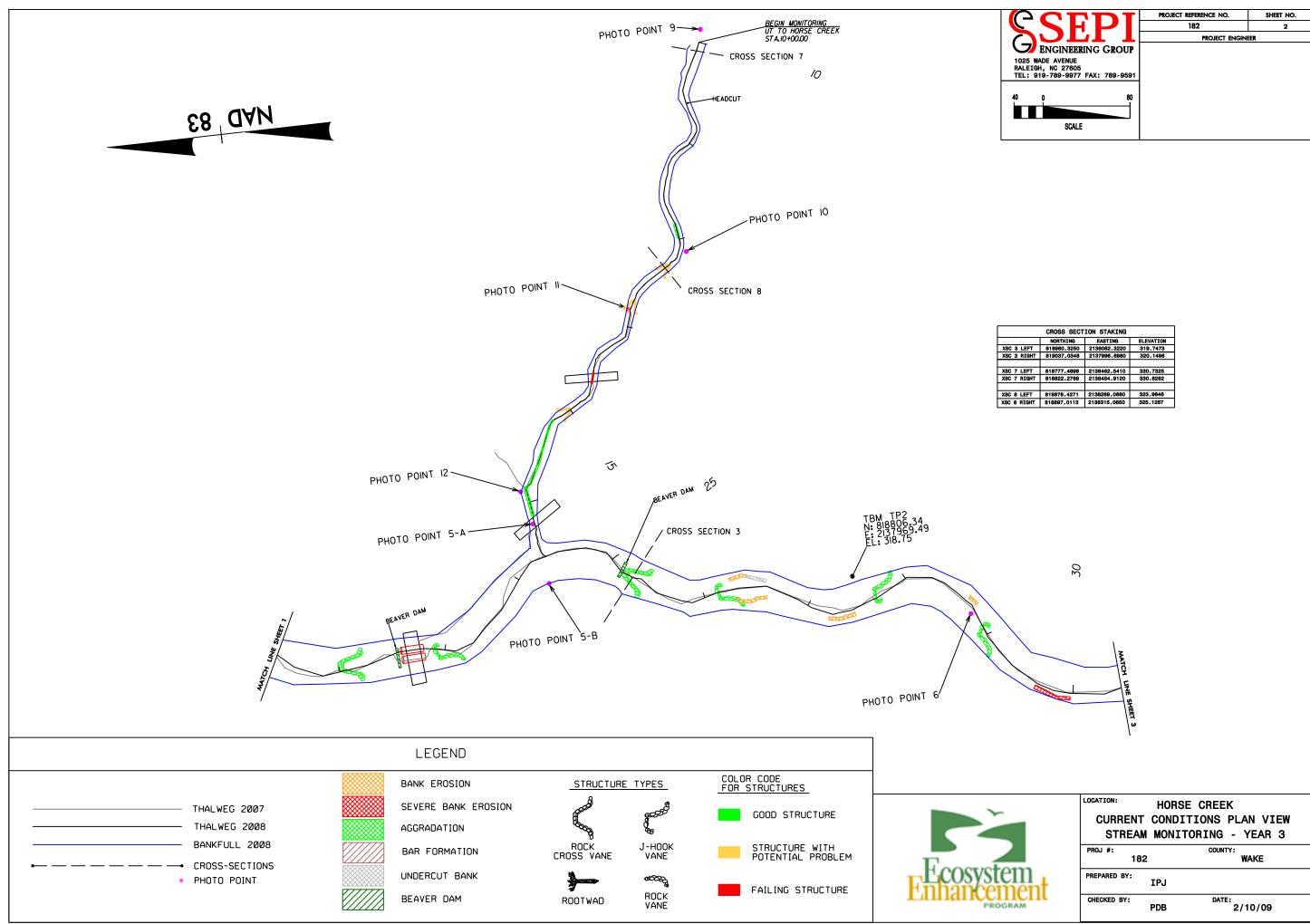

## STREAM PEBBLE COUNTS

At the request of EEP, pebble counts were not performed for Horse Creek or UT Horse Creek during Monitoring Year 3 because the are sandbed streams.

## APPENDIX C

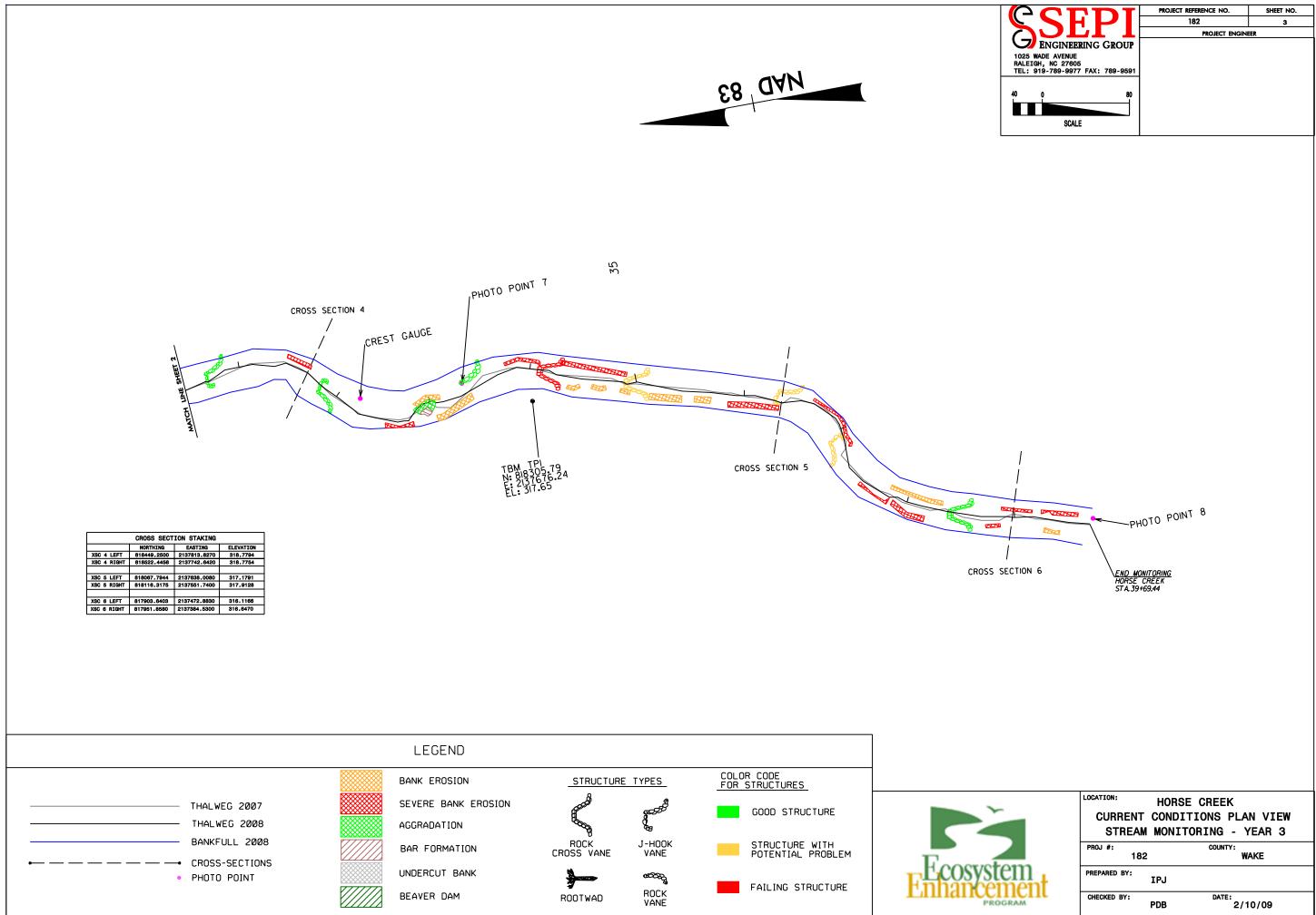
## PLAN VIEW SHEETS

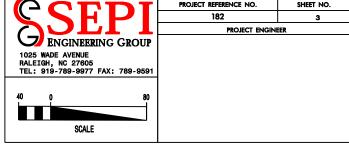


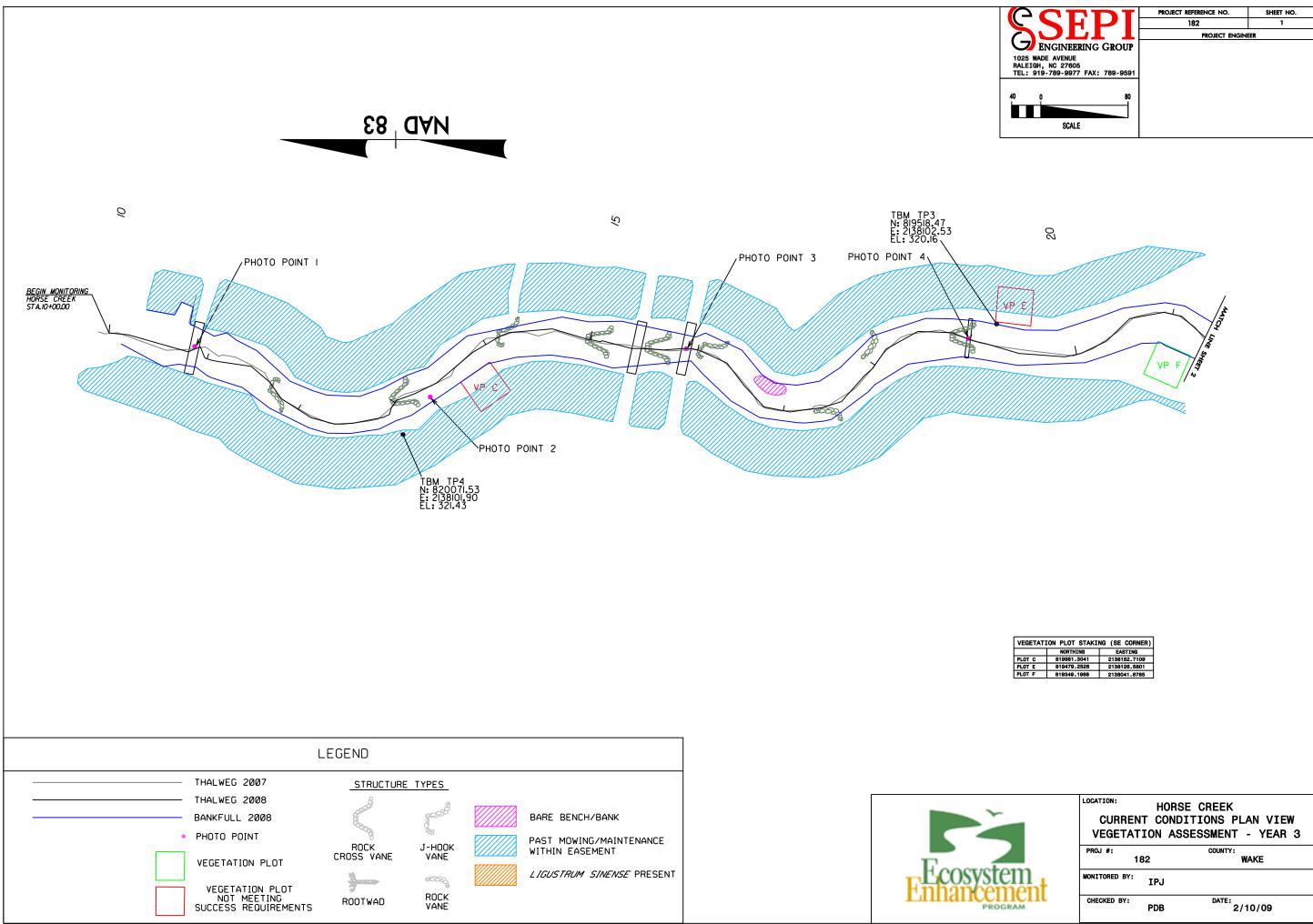






	PRO.
osystem	PREP
PROGRAM	CHE

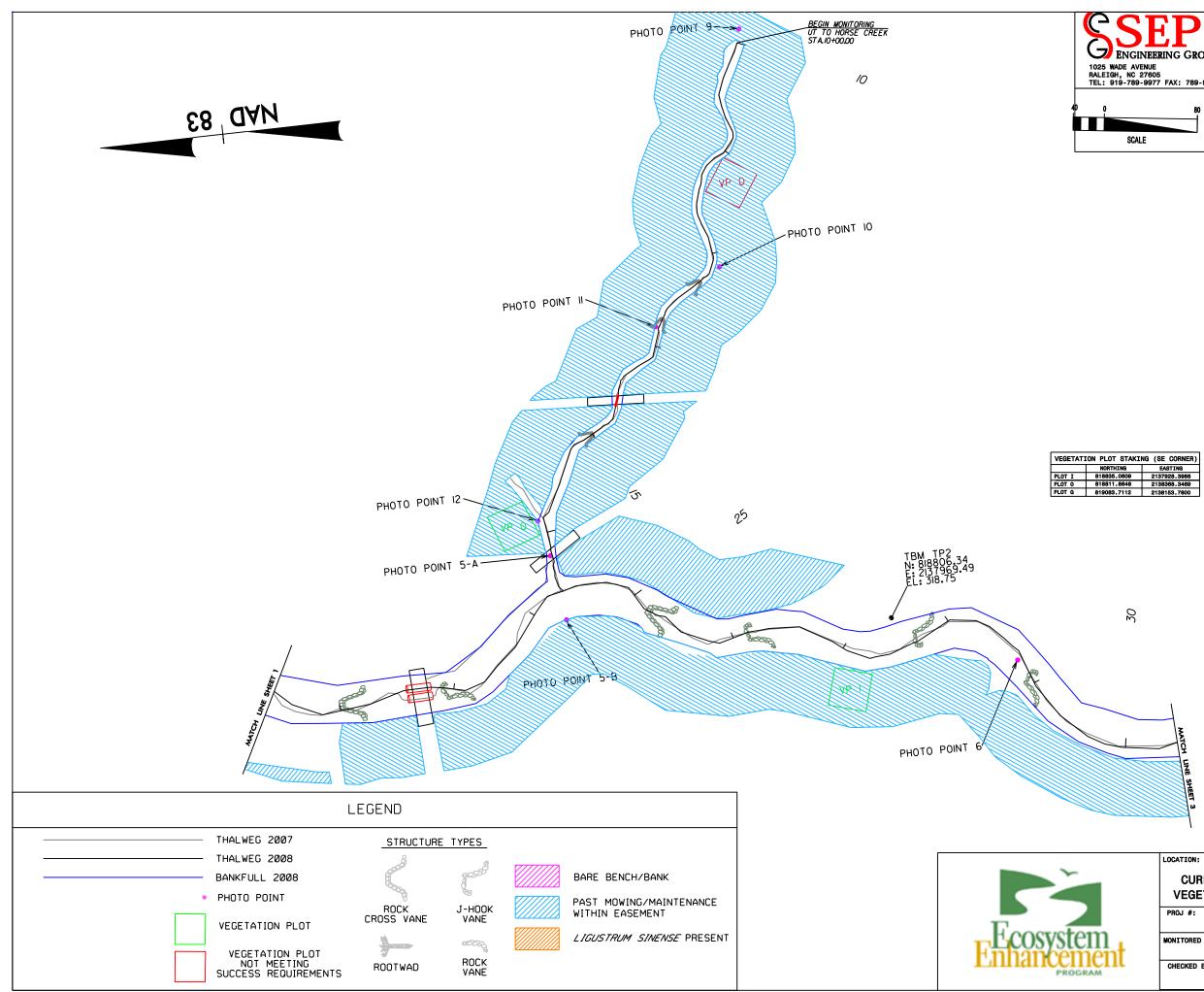

JUGATION;	HORSE CREEK		
	MONITORIN	IG PLAN VIEW	
	MONITOR	ING YEAR 3	
PROJ #:		COUNTY:	
	182	WAKE	
PREPARED	^{BY:} IPJ		
CHECKED E	PDB	DATE: 2/04/09	




			PROJECT REFERENCE NO.	SHEET NO.
			182	2
	<b>JOT</b>	┘┸ ┸┌	PROJECT ENGIN	EER
J	🖉 Engineei	NING GROUP		
	WADE AVENUE			
	IGH, NC 27605 919-789-9977	FAX: 789-9591		
40	0	80		
_	SCAL			

CROSS SECTION STAKING			
	NORTHING	EASTING	ELEVATION
XSC 3 LEFT	818960,3250	2138062,3220	319,7473
XSC 3 RIGHT	819037.0348	2137996.6980	320,1496
XSC 7 LEFT	818777,4698	2138462,5410	330,7325
XSC 7 RIGHT	818822,2769	2138484.9120	330,8282
XSC 8 LEFT	818878,4271	2138269,0660	323,9646
XSC 8 RIGHT	818897,0113	2138315,0650	325.1267

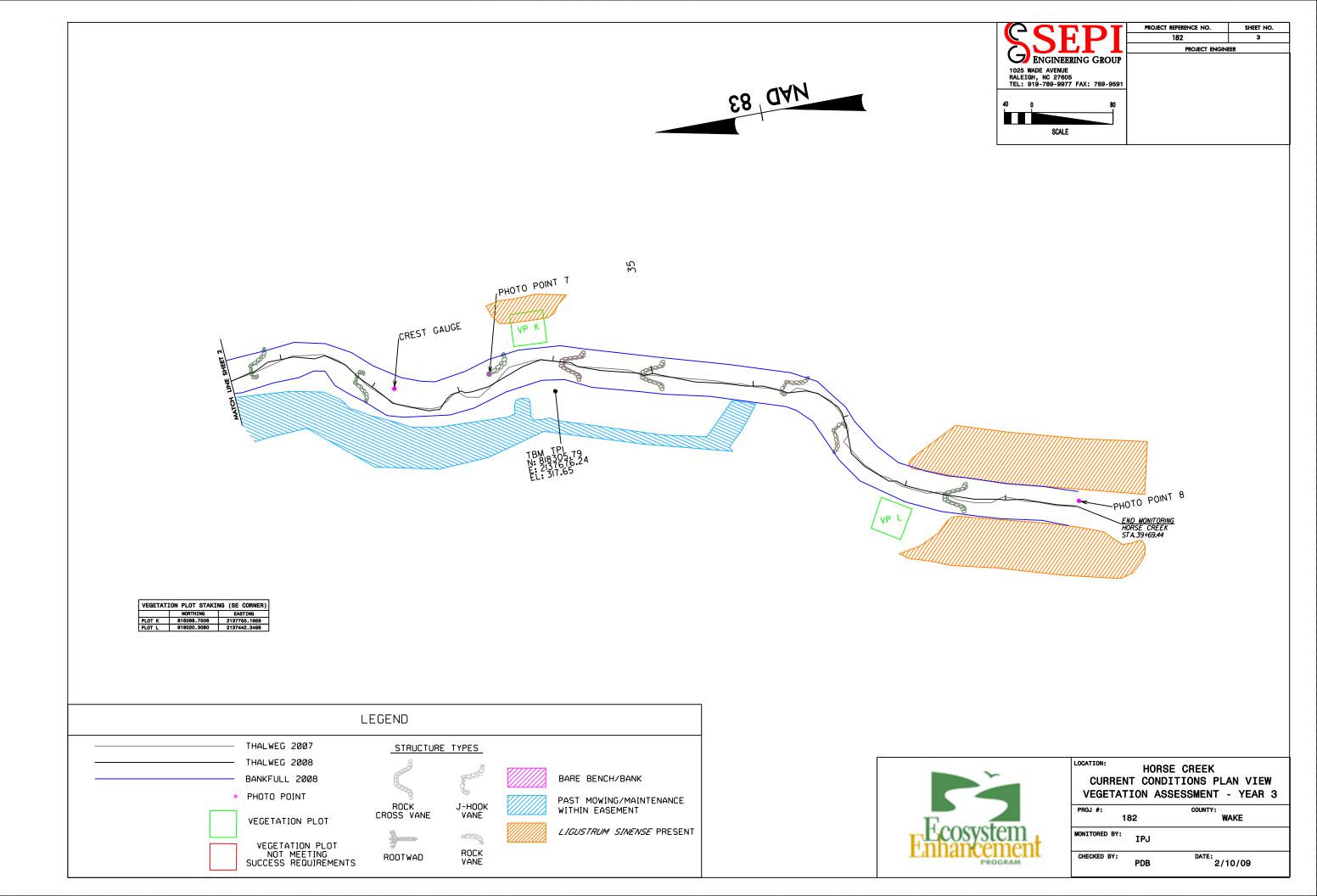







CURRENT CONDITIONS PLAN VIEW VEGETATION ASSESSMENT - YEAR 3			
PROJ #: 1	82	COUNTY: WAKE	
MONITORED BY:	IPJ		
CHECKED BY:	PDB	DATE: 2/10/09	

VEGETATION PLOT STAKING (SE CORNER)				
	NORTHING	EASTING		
PLOT C	819981.3041	2138152,7109		
PLOT E	819479,2526	2138126.5801		
PLOT F	819349,1988	2138041.6765		






LOCATION: HORSE CREEK CURRENT CONDITIONS PLAN VIEW VEGETATION ASSESSMENT - YEAR 3		
PROJ #: 1	82	COUNTY: WAKE
MONITORED BY:	IPJ	
CHECKED BY:	PDB	DATE: 2/10/09

VEGETATI	VEGETATION PLOT STAKING (SE CORNER)			
	NORTHING	EASTING		
PLOT I	818835.0609	2137928.3988		

CODDI	PROJECT REFERENCE NO.	SHEET NO.
	182	2
	PROJECT ENGIN	EER
ENGINEERING GROUP		
1025 WADE AVENUE		
RALEIGH, NC 27605 TEL: 919-789-9977 FAX: 789-9591		
p 0 80		
SCALE		

